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Abstract

Motivated by recent evidence of a carbon risk premium (Bolton and Kacperczyc, 2021),
we analyze firm-level patenting in Carbon Capture Utilization & Storage (CCUS) tech-
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inflated Poisson regressions on patent and financial data and CO2 emissions, we find
CCUS patents respond to CO2 emissions and climate policies. Moreover, although
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1 Introduction

Carbon capture (usage) & storage is an umbrella term bringing together a wide range of

different technologies, all contributing to a procedure that involves “the capture of CO2,

generally from large point sources like power generation or industrial facilities that use either

fossil fuels or biomass as fuel. If not being used on-site, the captured CO2 is compressed

and transported by pipeline, ship, rail or truck to be used in a range of applications, or

injected into deep geological formations such as depleted oil and gas reservoirs or saline

aquifers.” (IEA, 2023)[1]. CCUS technologies have roots dating back to the 1920’s, when

methods were developed to separate CO2 from sealable methane in natural gas reservoirs.

The concept of storing separated CO2 underground was developed during 1950’s, driven

by the intuition that high-pressure CO2 could enhance oil recovery (hereafter EOR) from

reservoirs that had been only partially depleted by traditional extraction methods. Then,

recently1 with the introduction of new technologies - e.g. Direct Air Capture and Storage

(DACCS), Bio-Energy with Carbon Capture and Storage (BECCS) and long-term storage

-, CCUS innovation has started to be valued as a powerful tool to reduce CO2 emissions

(Bui et al., 2018)[22] and, consequently, also subsidised by governments2. However, to date,

total capture capacity is still low, as the efficiency and scope of these new technologies are

low compared to the high sunk costs of projects, raising doubts about whether CCUS can

keep pace with expectations. In our technology overview, we highlight the peculiar nature

1In the European Union, the first EU CCUS directive (2009/31/EC), establishing a legal framework for
storing CO2 was issued in 2009.

2In the US, 136 projects received 13.5 billion USD for the period 2011-2026. In 2020, the UK government
has allocated 1 billion £ with the Carbon Capture & Storage Infrastructure Fund (CIF) starting 2020
(Sovacool et al., 2024[89]). In the EU, projects are financed through the Innovation Fund, Horizon Europe
and Connecting Europe Facility - Energy (CEF-E).
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of CCUS innovation and discuss its pros and cons with respect to environmental issues as

well as possible unintended consequences, such as bolstering the lock-in into carbon-intensive

industries.

This paper studies what drives firms to innovate in CCUS technologies and how capital

markets evaluate their efforts, using patents as a measure of innovation output.3 In figure 1,

our data show that in the last 30 years, the patenting trend has been flat until 2000, slowly

increased until 2010 and then started to climb fast around 2015, when the first COP-21 made

everybody aware of the climate risk, engaging also the finance industry in the fight against

climate change (see Bolton and Kacperczyc, 2021)[14].

Figure 1: CCUS patents filed and announced CCUS projects by year globally (source: own
data).

On the one hand, the acceleration in CCUS patenting may result from increasingly strin-

gent environmental policies, which can provide incentives to innovate stronger than cost

reductions (Della Longa et al., 2021[32]). On the other hand, firms in highly profitable and

concentrated markets (such as the fossil fuel industry) that operate with stable and cost-

3Our study does not evaluate the environmental impact of CCUS project deployment. This still remains
a debated subject, sitting among the hot topics discussed at the COP28 in Dubai (November 2023).
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effective technologies may have little incentive to shift to novel and riskier innovations, as

implied by Arrow’s replacement effect (Arrow, 1962[6]). In this trade-off, CCUS innovations

can be a unique opportunity for these firms to straddle the exploitation of their specific tech-

nological know-how and the pursue of a sustainable environmental transition. The pressure

from financial markets can therefore combine with regulatory constraints to provide firms

with powerful incentives to reduce their climate impact by innovating in environment-friendly

technologies, as long as investors evaluate that they can internalize their benefits (Hart &

Zingales, 2017)[50]. In fact, the intangible capital embedded in patents and projects that

enhance the firm’s social impact has been found to contribute to firm’s market value (see

Griliches, 1981[47] and Edmans, 2022[38]). CCUS innovations appear to join technological

and social (climate-related) aspects, thus motivating our interest in their determinants and

impact.

The empirical analysis uses a panel of worldwide firms tracked from 2010 to 2022. We

identified CCUS patents based on WIPO specific IPC/CPC classification codes and down-

loaded, from Orbis-IP database, all patents in the CCUS sub-classes and in the higher hierar-

chical class to which CCUS patents belong. Information on the identity of the patenting firm

then allowed us to match patent data with company financial data and CO2 emissions from

Orbis and Eikon-Refinitiv. Data on stock market returns, value and carbon emissions are

available only for publicly listed firms, and we use a panel of publicly listed companies with at

least a patent in CCUS or neighboring technologies to address two main research questions.

First, we estimate what drives firms’ decision to patent in CCUS (i.e., extensive margin) and

how much they do it (i.e., intensive margin), focusing on the role of direct carbon emissions

and environmental policy tightness. To measure the country regulatory pressure, we rely
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on the Environmental Policy Stringency index (EPS) computed by the OECD (Botta et al.,

2014[18] and Kruse et al. 2022[59]), focusing on its sub-indices specifically related to decar-

bonization policies. EPS sub-indices can be viewed as credible demand-pull factors for firms’

green transition strategies, and are often found to accelerate eco-innovation (Hassan & Rous-

selière, 2022[52]). To estimate firms’ patenting activity, we employ the zero-inflated Poisson

regression model, which conveniently deals with count patent data within a two-stage model,

assuming two different zero-generating processes (see Noailly & Smeets, 2015[74], Briggs &

Wade, 2014[19] for recent applications).

Second, we investigate the impact of firms’ CCUS patents on their market value and

stock returns, and whether the financial markets’ response to CCUS patenting changes with

their levels of CO2 emissions and with tighter environmental regulation.4 Empirically, we

depart from the typical approach estimating the market value of patents (see Gambardella,

2013[45]) to obtain the firm-level private return of intangible assets (see Bosworth & Rogers,

2001[17]; Tovainen et al., 2002[92]; Thoma, 2021[91]) in that we follow the literature that

models market value as a function of tangible and intangible (knowledge) assets, in our case

CCUS patents (see Griliches, 1981[47], Hall, 1999[48] for a review, and Colombelli et al.,

2020[30] for recent evidence). We extend this model by testing whether the effect of CCUS

patents on market value depends on CO2 emissions, i.e., on the firm’s carbon-transition risk.

We then turn to total stock returns, as recent evidence of a “carbon risk premium” requested

by investors to high-emitting firms (see Bolton and Kacperczyc, 2021[14] and Bauer et al.,

2022[8] among the others) is a plausible motivation to investigate if CCUS patent activity

4Arguably, this might suggest a strategic use of patenting in CCUS technologies to address changes of
climate policy and pressure from environmentally motivated investors (see for example Yu et al., 2017[99].
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might mitigate this risk, as a reward to firms’ efforts to innovate in technologies that reduce

CO2 emissions. We thus differ from the finance literature investigating directly the presence

of a carbon risk premium in that we search what can reduce it. Hence, evidence of a negative

relationship of CCUS patents with expected stock returns would suggest that they reduce the

carbon risk premium requested by the financial markets to invest in the patenting companies.

Finally, because the stranded asset problem may particularly expose carbon-intensive firms

to the “climate transition risk” (Byrd & Cooperman, 2018)[23], we also test whether the

mitigating effect of CCUS patents is stronger for companies with higher CO2 emissions.

Our findings may be summarized as follows. First, the decision of innovating in CCUS

technologies is likelier the “browner” is the firm (i.e., the higher the level of its CO2 emissions)

and the tighter is the environmental regulation, while increases in patenting intensity are

(weakly) related to “increases” in direct emissions. Second, patenting in CCUS technologies

seems to be acknowledged by the stock market, particularly if the firm is a high CO2 emitter.

In fact, although CCUS patents appear negatively related to the firm’s market value, the

relationship turns positive when we account for the level of CO2 emissions, suggesting that

stock markets positively evaluate the CCUS innovation activity of firms with a negative

environmental impact. Similarly, we find that CCUS patents are positively related with

expected stock returns, suggesting that investors require a higher risk premium, possibly

due to both the idiosyncratic climate-transition risk of firms engaging in CCUS technologies

and the uncertain returns of research activity in this field. However, the risk premium reduces

for firms with higher carbon emissions, showing that the stock market recognizes their effort

to mitigate not only their climate impact but also the negative effect of the climate-transition

risk on their profits. Based on our results, we can calculate quantitative effects from which
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we derive policy implications.

We contribute to the literature in several ways. First, our study is the first one, to the best

of our knowledge, that analyses, at the firm-level, the determinants and the financial impact

of patenting in a technology like CCUS, which is deemed by UNECE (2021) as essential to

unlock the full potential of decarbonization and attain carbon neutrality. Second, we address

the debate on the carbon risk premium by studying what may reduce it, and find that high-

emitting firms may mitigate their climate-transition risk by innovating in CCUS technologies,

which are embedded in their genetic heritage, hence, to some extent, less difficult and costly

to deploy. Third, our finding that the direct market response to the innovation effort in

this field is not outright positive suggests that CCUS innovation is not (yet) viewed as other

green and high-tech innovations (see Doran & Ryan, 2012[36] and Colombelli et al., 2020[30]

for green inventions and Feyzrakhmanova & Gurdgiev, 2016[42], and Bruneo et al., 2023[20]

in pharmaceuticals and biotechnology). This is probably due to the climate-transition risk

associated with many of the patenting firms engaged in the fossil fuel industries and to the

uncertainty about the actual economic benefits. Fourth, our evidence nevertheless suggests

that acknowledgment by the capital markets may provide the more polluting firms with

economic incentives to eco-innovate that might be more effective, and less easy to elude,

than environmental policy norms.

The remainder of the paper is organized as follows. Section 2 presents an overview of

CCUS technologies. Section 3 presents the background literature for our study and derives

the research questions. Section 4 describes the construction of the dataset, the main variables

and the descriptive statistics. Section 5 presents the empirical strategies and results. Section

6 concludes. In the appendix, we present the IPC classification codes used to identify CCUS
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technologies, additional descriptive statistics and the correlation matrices, the derivation of

the empirical models and the results of a battery of robustness checks.

2 A critical overview of CCUS technologies

CCUS patents are classified based on International and Cooperative Classification (IPC

/ CPC) codes. Mapping these codes to technological groups is a complex task that was

addressed by the specialized literature.5 For our purposes, we adhere to the segmentation

outlined in the IPCC 2005 special report on Carbon Dioxide Capture and Storage[70], and to

the subsequent adaptations by UNECE[90] and the Directorate-General for Climate Action

of the European Commission[29].

This framework views CCUS as a four-step process: capture, transportation, storage

and utilisation. The capture phase involves several systems, depending on how CO2 is pro-

duced: post-combustion capture, pre-combustion capture, and oxy-fuel combustion capture

are examples of available technologies. These systems employ advanced gas separation tech-

nologies, as reflected in the IPC / CPC codes. Transporting captured CO2 can be done via

pipelines, which, although costly, offer high capacity and long-distance capabilities. Water-

borne transport is used for large-scale movements of CO2 and other liquefied gases, while rail

and road transport, though less common, are used for smaller capacities. Then, CO2 is either

utilized to produce economically valuable goods or long-term stored. Utilization of captured

CO2 can occur through mineralization, to incorporate CO2 into concrete, chemical processes

5For an inventory of CCUS technology reserves, detailed technological insights, and specialized references,
see Kang et al., 2021[56] who, applying a dynamic programming algorithm combined with topic modeling
to patent data, identify twenty-seven key technology clusters and derive the main development paths for the
CCUS patent market.
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to produce synthetic fuels or fertilizers,or biological methods like biochar sequestration to

enhance the quality of soil. The environmental impact of these uses differs, as mineraliza-

tion into cement offers greater potential in terms of scale and sequestration duration, while

chemical uses require smaller quantities and shorter sequestration time.

Finally, storage involves injecting high-pressure CO2 into geological formations, such as

deep aquifers and oil deposits. Aquifers, i.e., porous rock formations containing salty water

beneath impermeable rock layers, can securely store CO2 for long periods with minimal

leakage risk. Another option is EOR, where CO2 is injected into oil wells to extract remaining

oil reserves. Although not universally adopted, EOR has been a common practice since the

1970s (Merchant, 2017[69]) among fossil fuel companies. This technique can be considered

beneficial to the environment provided that the quantity of injected (and stored) CO2 is

higher than the sum of the amounts of CO2 emitted during the extraction process and by

the extracted oil.

However, recent CCUS technologies show great potential towards combating climate

change. DACCS (Direct Air Carbon Capture and Storage), DOC (Marine, or Direct Ocean

Capture), BECCS (Bio-Energy Carbon Capture and Storage), and Microalgae-based carbon

sequestration represent carbon removal options that directly aim at sequestration of emis-

sions from the atmosphere, the seawater or through bio-masses. Although many challenges,

such as the need for further technological advancement and high operational costs, may still

delay the deployment and scale-up of these technologies (Al Yafiee et al., 2024[3]), the main

difference between point-source and carbon removal technologies lies in the environmental

and economic implications their implementation has in the real world, particularly with re-

gard to their impact on the diffusion of renewables and the phase-out of carbon-intensive
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assets.

Hence, not surprisingly, given the complexity and diversity of CCUS technologies, whether

they can be defined straightforwardly “green” is still an object of debate within the scientific

community. While point-source technologies like E.O.R. and carbon removal options like

DACCS and DOC are usually grouped under the CCUS umbrella, they differ significantly

in terms of technology maturity (see Kang et al. 2021[56]), infrastructure needs and policy

relevance. As long as these differences matter also beyond the standpoint of mitigation, the

motivations behind investing and innovating along different pathways, i.e., whether to aim for

genuine decarbonization objectives or to pursue asset-preserving strategies, are worth to be

studied specifically.6 Therefore, while CCUS may hold significant potential for contributing

to the green transition (UNECE, 2021[90]; Nath et al., 2024[72]) by enabling sector-specific

technological advancements in that direction, ensuring cost savings in meeting climate tar-

gets7 (Budinis et al., 2018[21]), and as a component of a hydrogen production process8, one

has also to consider its drawbacks to give an unbiased assessment. First, some forms CCUS

- especially when linked to E.O.R. or used by fossil fuel incumbents - may risk reinforcing

lock-in investments in fossil fuel-related infrastructure typical of carbon intensive technolog-

ical pathways, delaying energy transition and hindering progress of other green technologies

(Vergragt et al., 2011[93]; Faber et al., 2025[39]). Second, to maximize its effectiveness,

CCUS requires efficiency-enhancing innovation and substantial financial investments due to

6We thank one Reviewer for raising this point. Unfortunately, due to the technical difficulties that exist
in disentangling technologies still in their infancy like NET in terms of patent codes’ identification (see more
on this issue in the data section and, for detailed analyses, Kang et al. 2021[56] and Kang et al. 2022[55]),
to address this matter empirically is beyond the scope of our study.

7IPCC estimates a 138% increase in discounted transition costs (2015-2100) should CCUS be abandoned.
https://www.ipcc.ch/site/assets/uploads/2018/02/ipcc_wg3_ar5_summary-for-policymakers.pdf

8for example, see the UK CCUS-Enabled Hydrogen Production Report https://hydrogen-uk.org/

wp-content/uploads/2023/09/HUK-CCUS-Enabled-Hydrogen-Production.pdf
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the high costs of project development9. Scaling projects to the hub level helps decrease

costs related to CO2 capture and raw material availability (for usage), and may thus make

CCUS economically feasible for applications in several sectors (e.g., cement, see Monteiro

et al., 2022[71]). Clearly, CCUS still faces various challenges, starting from a well-defined

regulating framework, incentives for infrastructure efficiency (e.g., project hubs, transporta-

tion facilities, storage sites, etc.) and cost barriers (Nath et al., 2024[72]). Balancing the

pros and cons of these issues implies serious policy and economic considerations beyond the

scope of this paper. However, to enforce the green transition, industrial and energy policy

should particularly promote “green” or net-negative emission CCUS technologies to mitigate

potential environmental externalities10.

Summarizing, our technology review has highlighted the controversial nature of CCUS

and the difficulty to enlist it, unquestionably, as an eco-innovation. However, to the extent

that the new generation of CCUS innovations are motivated by decarbonization policy and

that firms in carbon-intensive industries that patent in this field may ultimately reduce their

CO2 emissions, in this paper we will treat it as (a peculiar type of) eco-innovation.

3 Related literature and research questions

The academic literature on CCUS technologies mainly covers techno-economic analyses,

case-studies for industrial plants and cross-sectional patent landscapes, whereas the research

questions of our study pertain to the field of economics. Thus, our conceptual framework

builds upon two streams of the economic literature - the study of eco-innovations and the

9See Wang et al., 2021[94] for a study on survival rate of CCUS projects.
10See Rosa et al., 2021[85] for a study on water-footprint of CCUS technologies.
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analysis of the impact of innovation (and in particular eco-innovations) on firms’ performance

in the financial markets.

3.1 Eco-innovations

Even though the definition of eco-innovation is not unique across the various studies, it is

often referred to as the subset of innovations with a specific focus on the reduction of the

adverse effects on the environment and a more efficient use of resources (Hojnik & Ruzzier,

2016)[54]. They typically include technological, product or process innovations as well as

social or institutional innovations. In general, their positioning straddles innovation and

environmental economics (Rennings, 2000)[84], leading to the well-known “double externality

problem”. Not only eco-innovations generate knowledge externalities in the stage of research

and development, but they also produce environmental externalities at the time of adoption

and diffusion. Hence, and also due to high risk and uncertainty, the private returns of R&D

are lower than the social returns, making firms reluctant to invest in this kind of innovations.

CCUS fits into this case, since private returns from its implementation are proportional both

to the stringency of environmental policies such as carbon pricing or emission trading schemes

(in the case of storage) and to the revenues generated from new products involving captured

CO2 (in the case of usage). Nevertheless, initial sunk costs for CO2 capture are still too

high, and carbon pricing is too low to make projects profitable in many cases (Budinis et

al., 2018[21]), in spite of their potential environmental benefits. Hence, given the urgent

need of solutions to face the climate risk, dedicated policies have to encourage firms to

invest in eco-innovation. Indeed, a substantial literature has developed around the impact
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of environmental policy on eco-innovation. Yange et al. (2022)[98] use the number of green

patents over local population levels as a measure of urban eco-innovation to show the positive

effects of low-carbon city policies in China. Cainelli et al. (2020)[24] with a firm-level study

exploiting the European Community Innovation Survey, find that the environmental policy

has positive impact on innovations targeted to the circular economy.

The literature on the determinants of eco-innovation is also rich and dense, though not on

CCUS. Many studies focus on the difference between traditional and green innovation, often

finding that typical drivers such as (general) R&D expenditure and human capital are more

effective in fostering traditional innovation than green one. Focusing on green innovation, the

presence of quality management systems (See Cuerva et al., 2014)[31], the access to public

funds and fiscal incentives (Cecere, Corrocher & Mancusi, 2020)[26], and public-private

collaborations (Scarpellini et al., 2012)[86] were found to be significant determinants, while

De Marchi (2012)[33] has shown that, within eco-innovation activities, cooperative R&D

substitutes traditional internal R&D. Finally, it has been suggested that the development of

eco-innovation is often sector-specific, and that its determinants are influenced by sectoral

features (Galliano & Nadel, 2015)[44].11 For example, Faria & Andersen (2017)[41] find that,

in the automotive industry, green innovations tend to converge at sector-level and increase

in intensity when they are complementary to existing innovations. These findings, though

related to other fields of innovation, are particularly useful in defining a theoretical framework

for studying CCUS technologies and their adaptability to environmental objectives to the

extent that they are complementary to some of the fundamental technologies used in the

core business of firms. Examples of such complementarity and adaptability is EOR for Oil

11See also Del Rio et al., 2010[34]
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& Gas and CCS in the cement industry where the captured CO2 is used as inert additive

for concrete.

Eco-innovations are also studied for their impact on climate change and, specifically, on

the levels of CO2e emissions. The evidence is mixed. On the one hand, Puertas & Marti

(2019)[83] (with a country-level analysis using patents and R&D innovation) and Lee & Min

(2015)[60] (with a firm-level study focusing on green R&D) find that eco-innovations lead to

an overall significant reduction of CO2e emissions. On the other hand, Bolton, Kacperczyk

and Wiederman (2023)[16], in a recent comprehensive study on a worldwide sample of firms

tracked from 2005 to 2020do not find any significant effect of green innovation on direct and

indirect corporate CO2 emissions of the innovating firms.

Ultimately, the literature has also focused on the pressure exercised by high CO2 emissions

on companies’ strategies, i.e., whether firms might be induced to invest in eco-innovation

to leverage their commitment with the markets and mitigate environmental issues related

to the carbon-transition risk of their activities. In this vein, Wang et al.(2020)[96], with

a country-level analysis, find that the climate-related pressure exerted by CO2 emissions

increases the probability of eco-innovation (particularly green-technologies in specific fields,

such as transportation), through the mediation of environmental regulation.

The above arguments and empirical findings pave the way for our first research question:

RQ 1a: What drives the decision to patent in CCUS technologies?

RQ 1b: What is the role of environmental pressure related to the climate risk?

We study these questions by investigating factors that affect heterogeneous firms’ decision

to patent in CCUS (extensive margin) and how much to innovate (intensive margin), i.e.,
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how many patents, conditional on a positive patenting decision. We are not studying what

triggers the decision to enter in the realm of CCUS technologies.

We approximate the environmental pressures with firm-level CO2 emissions and with

environmental regulation, as measured by country-level sub-indices of the Environmental

Policy Stringency Index (EPS)12. The former suggests that CCUS patent intensity might be

higher in companies in carbon-intensive sectors, which are more exposed to a stranded asset

problem (Byrd & Cooperman, 2018)[23]. We are driven by the insights of the previous

literature, whereby demand factors related to climate risk concernmay drive the decision to

engage in eco-innovation, whereas considerations about cost saving, efficiency improvements

and firm capabilities more likely affect patent intensity (Kesidou & Demirel, 2012)[58].

To the extent that environmental pressure also equates to greater climate risk, affecting

the preferences of financial investors, also the public equity markets may end up requir-

ing higher returns - i.e., a carbon risk premium - to high-emitting companies (Bolton &

Kacperczyk, 2021)[14]. This is the issue we address in the following section.

3.2 Innovation and stock market performance

In general, patents are thought to bring value to the firm in that they assign exclusive

property rights on a certain invention for a limited period of time (see Griliches, 1981[47],

Bloom & van Reenen, 2002[11], Hall et al., 2005[49]). Their private returns have often been

estimated in terms of discounted patent rents (see Pakes et al., 1984[75] and, more recently,

12In particular, we employ the sub-indices relative to Carbon taxation, Emission Trading Schemes and
R&D public subsidies. If it were possible to examine the effect of these policies on point-source and net
emission technologies separately, one could expect that R&D public subsidies and other forms of governmental
incentives to technical advancements (should) significantly explain an increase in patents in the field of carbon
removal.
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Bessen, 2009[10]). This approach, however, estimates the market value of patents, rather

than whether patents contribute to firms’ market value. Therefore, to model the impact

of CCUS patents on the firms’ financial performance we refer to another branch of the

innovation literature (see Hall, 1999[48] for a review), which was set off by the seminal work

by Griliches (1981)[47], who ultimately finds that the market value of companies is positively

related to the value of their knowledge assets. Since then, this framework has been largely

adopted by studies investigating the impact of R&D investment and patents on firm market

value. Whether research efforts positively affect market value by reducing uncertainty about

the firm’s prospects (Nemlioglu & Mallick, 2020)[73] is an example of the recent directions

taken by this literature. Colombelli et al. (2020)[30] has adapted this framework to green

innovation, finding that green patenting positively affects firm’s market value as measured

by the market to book ratio. We follow their approach and describe the estimating model

in more detail in the empirical design section.

The impact of environment-related issues on firms’ stock market performance has also

been modeled in the framework of expected stock returns and their relationship with carbon

risk of green and brown companies13. As already discussed, the increasing engagement of

investors in climate-friendly issues (Bolton and Kacperczyk, 2023)[15] is expected to combine

with climate policies to incentivize risk-taker companies to overcome the competition asym-

metries implied by high-cost investments - thanks to a dynamic view of the economic cycle

that will eventually ensure a competitive advantage to companies active in environmental

innovation (see Porter & Van Der Linde, 1995[82] and Porter, 1991[81]). In a context of

13See Bauer et al., 2022[8], who study the relative equity pricing of more vs. less climate-friendly com-
panies; and Gorgen et al. 2020[46], who compare the stock returns of brown and green firms to construct a
carbon risk factor
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climate change where shareholders grow more socially responsible, maximization of share-

holder welfare - rather than wealth - becomes the objective of utility-maximizing investors,

laying the ground for environment-friendly investments (Hart & Zingales, 2017)[50].

In this paper, we refer to the concept of “carbon premium”, which Bolton & Kacper-

czyk (2021)[14] introduce and empirically find in a cross-section of US-stock returns, as the

higher premium requested by the equity market to invest in firms with a higher level of CO2

emissions. The literature that studies the relationship between intangible assets and stock

returns typically assumes that discounted future value of R&D might not be fully incorpo-

rated by investors due to its inherent riskiness and uncertainty. To the extent that R&D

intensity is associated with increased volatility (Chan, Lakonishok & Sougiannis, 2001)[27]

higher returns (i.e., a higher cost of of capital) will be required by the market, especially

when the firm is financially constrained (Li, 2011)[62].

When introducing patents or R&D expenditures in this framework, results generally

hold, as both patents and R&D intensity are found positively associated with higher and

more volatile returns (Mazzucato & Tancioni, 2008)[68]. In particular, Pástor & Veronesi

(2006)[78] argue that, during “technological revolutions”, novel technologies - such as rail-

roads in the 1800s and internet in the late 1990s - imply higher uncertainty about the

expected future productivity and profits of innovating firms, thus raising their discount rate

and their returns. This framework fits the current situation, as firms race to achieve the most

efficient green technology in order to face increasing environmental constraints in a context of

radical social and economic change (hence surrounded by systematic uncertainty). However,

the debate on this topic is still open. On the one hand, Andriosopoulos et al. (2022)[4], with

an event study on the announcement effect of new green patents made by the USPTO in US,
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have found that they have no significant impact on market value, also for companies active

in carbon-intensive sectors. On the other hand, Leippold & Yu (2023)[61], with a portfolio

simulation analysis, found that green patents have a negative impact on annual realized

returns, although their realized profits are found to be higher than expected in response to

market shocks which generate higher environmental pressure, confirming that green patents

confer greater protection against climate risk. We thus differ from this literature that in-

vestigates directly the presence of a carbon risk premium in that we estimate the whether

CCUS patent activity can reduce it.

In the end, the literature reveals that the uncertainty related to the market’s response to

eco-innovation comes from different, possibly opposite sources. On the one hand, higher risk

due to R&D and climate policy uncertainty (which raise the risk premium), on the other

hand, mitigation of the firm’s transition risk when the new technology is pro-environment

(which lowers the risk premium). This contrast, with an uncertain net effect, properly fits

the case of firms patenting in CCUS, as the financial markets signal their trust (or mistrust)

by requesting firms a lower (or a higher) premium. We contribute by providing empirical

evidence on which effect prevails.

The above literature motivates our second research question:

Research question 2: Do capital markets respond to CCUS patenting, and does the re-

sponse change with firms’ “browness”?
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4 Sample construction, Data, and Descriptive statis-

tics

4.1 Patent data

To construct the dataset we extracted CCUS patents from Orbis-IP (Intellectual Property),

the Bureau van Dijk’s platform dedicated to intellectual property data, using CCUS-specific

codes by the International and Cooperative Patent Classifications (IPC/CPC) selected by

WIPO.14 We identified CCUS patents based on the selection of codes available in the IPC

green inventory for carbon capture and storage patents,15 to which we added the CPC

codes in the Y02C16 and Y02P17 sub-classes for carbon capture, sequestration or disposal of

greenhouse gases, because these were missing in the IPC green inventory.18

Then, we retrieved patents also from the higher hierarchical IPC/CPC class so as to

enable the comparison between firms patenting in CCUS technologies and firms that have

not filed CCUS patents but still do research in a neighbouring technological area. We define

this set as CCUS-neighbouring technologies.19 Appendix A reports the codes and brief

14WIPO classification comprises classes, sub-classes, groups and sub-groups. See Figure 2 In Appendix
A.

15The IPC green inventory provide sub-group-level codes for CCUS technologies. See https://www.wipo.
int/classifications/ipc/green-inventory/home

16https://www.uspto.gov/web/patents/classification/cpc/html/cpc-Y02C.html
17https://www.uspto.gov/web/patents/classification/cpc/html/cpc-Y02P.html
18As remarked in Section 2, distinguishing, and separately analyzing, newer carbon removal technolo-

gies (negative emission, or NET) based on patent codes classification appears, for the time being, still quite
complex. Kang et al. (2022)[55] note that NET development is still at the beginning, and propose a method-
ology to identify patents (and patent families) pertaining to these fields. So far, however, the identification
of these technologies has not yet been translated into a standard patent classification that we can use to
construct a database appropriate for our empirical analyses. Although the analysis of the determinants and
the implications of these technologies is of great interest, our empirical approach implies that we rely on a
patent classification that allows us to address our research questions within a firm-level approach.

19Specifically, we add patents featuring at least one IPC/CPC code relative to the same sub-classes (level
3) that include CCUS technologies. By comprising these additional patents (and firms) in the dataset, in
the empirical analysis, we can contrast firms with CCUS patents and firms with similar scientific know-how

18

https://www.wipo.int/classifications/ipc/green-inventory/home
https://www.wipo.int/classifications/ipc/green-inventory/home
https://www.uspto.gov/web/patents/classification/cpc/html/cpc-Y02C.html
https://www.uspto.gov/web/patents/classification/cpc/html/cpc-Y02P.html


descriptions of the groups that altogether define CCUS technologies (Table 11) and of the

sub-classes used to identify neighbouring technologies (Table 12). As we downloaded patents

throughout the world, to ensure cross-country comparability we only included patents filed

within WIPO, EPO, USPTO, Japan and China national offices20 to avoid double counting

of patents filed both at a national and regional office. We focused on priority patent filings

to capture firms’ commitment to innovative activity (rather than its success).21 Then, we

matched patent data with accounting and financial data for firms identified through Orbis

identification number.

To control for possible involvement of firms in other environmental innovation, we include

a “green” patents variable, downloaded from Orbis IP and identified as “green” based on

the ENV-tech classification by OECD (see Haščiči & Migotto, 2015 [51]).22 To avoid double

counting, we subtracted the number of CCUS green patents from the count of green patents

for each firm and year and, for reasons of computational capacity, we included the “green

patents” control only since year 2010. We then built a binary variable to denote firms that

filed at least one green (non-CCUS) patent in every year of the period 2010-2022.

that did not file CCUS patents, not only firm with higher and lower CCUS patenting activity. We thank
one Reviewer for suggesting this strategy.

20We have chosen to include patents filed by China, a major innovator in CCUS technologies, even though
the quality of their data has been sometimes argued by researchers in this area. Indeed, patent quality is not
the focus of our analysis, as much as it is the innovation effort strategy that patenting firms communicate
to the financial markets.

21Priority year was used whenever available, and the filing year was employed when the latter was missing.
22This classification has been extensively used in the green innovation literature to identify environmental-

friendly technologies (see Fusillo, 2023[43] as an example).

19



4.2 Firm data

Based on information about patent applicants, we identified firms that patented at least one

CCUS innovation (CCUS firms) and firms patenting in neighbouring technology during the

period 2000-2022, tracking them over time (in order to ultimately construct a firm panel

dataset). This time frame allows us to cover the potential evolution of firms’ patent strategy

in a period when the worldwide sensitivity to climate risks was rapidly growing, and at the

same time to exclude companies that had not been active in this field for quite a long period.

The panel data consists of publicly listed firms because the research questions addressed by

this study require stock market data (market value and total stock returns) and carbon

emission data, which are consistently collected from Eikon-Refinitiv only for quoted firms.

For each company, the number of patents was counted and summed by year. However,

some companies are affiliated or subsidiaries of a large corporation. To control for the

corporate strategy in the development of CCUS technologies (research and innovation paths,

production synergies and infra-group financing), we added up the patents of firms belonging

to the same corporate group or GUO, i.e., Orbis IP’s “global ultimate owner”, while keeping

all other accounting and financial variables at the GUO (i.e. corporate) level (see Benassi

et al., 2021)[9]. For companies not affiliated to groups there is a one-to-one correspondence

between patent and accounting/financial data.

From Orbis database we retrieved the balance sheet data, the market-to-book ratio (as a

proxy of the Tobin’s q) and the information on the firm’s geographic location and industry

NAICS codes. From Eikon-Refinitiv database, we collected the annual total stock returns

and carbon emissions (Scope 1 CO2 emissions), which we use as a proxy of the external
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pressure on the firm to reduce its environmental impact.23 We then matched the firm data

in the Orbis and Eikon databases by using the company ISIN code.

Table 1 reports the average CCUS patent filings per GICS sector and the corresponding

average level of Scope 1 CO2 emissions. The level of carbon emissions is higher in Utilities,

Energy, Materials while Energy, Consumer discretionary and Materials are the top patenting

sectors.

Table 1: CCUS Patents and CO2 Emissions per Firm-Year by GICS Code (own data)

GICS Code CCUS Patents (Mean) CO2 Emissions (Mean)

Energy 6.56 18,200,000
Materials 1.83 7,569,314
Industrials 1.23 369,616
Consumer Discretionary 2.69 614,135
Consumer Staples 0.07 1,104,146
Health Care 0.22 1,132,234
Information Technology 1.04 298,230
Communication Services 0.72 278,247
Utilities 0.77 29,200,000

Nfirms 259 259
Total 2.03 6,150,744

To further account for the external pressure to reduce the climate impact, we draw on

the Environmental Policy Stringency index (Botta et al., 2014[18] and Kruse et al., 2022[59])

based on different policy indicators at the country level.24 To address policy interventions

specifically related to decarbonization policies, we single out the following sub-indices: CO2

Tax, CO2 ETS, Diesel tax, Low Carbon R&D subsidies, Technology support policies.

23CO2 emissions are classified as Scope 1 (direct emission from production), Scope 2 (indirect emission
from consuming purchased heat and electricity) and Scope 3 emissions (indirect emissions from logistics,
sale and disposal of sold products). Given the large number of missing values for Scope 2 and 3 emissions,
we use Scope 1 emission. Since also Scope1 data report several (around 2%) missing values, we decided to
linearly interpolate the missing values in between non-missing years so as to maintain, as much as possible,
the integrity of the distributions over time.

24The index is calculated by the OECD and covers market- and non-market based policy instruments and
technology support policies (e.g., public R&D expenditure).
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The final dataset includes 408 firms, of which 259 patented at least one CCUS innovation

in the sample period. Total CCUS patents filed in the sample period amounts to 5,937.

The starting date of the panel data used in the econometric analyses is 2010 because the

information on green patenting is available only from 2010. Table 2 and Table 3 report the

distribution by country of origin and by GICS sector of the publicly listed firms in the panel

data we use in the empirical analyses, highlighting CCUS firms i.e., those with at least one

CCUS patents.

Table 2: Firms distribution by (top 10) coun-
try

Country Total CCUS firms

US 112 54

JP 106 100

DE 36 20

GB 36 18

FR 33 16

SE 14 5

FI 11 7

IE 8 6

NO 8 4

CH 7 7

Other 37 22

Firms 408 259

Table 3: Firms distribution by GICS sector

Sector Total CCUS firms

Communication Services 2 2

Consumer Discretionary 41 28

Consumer Staples 11 2

Energy 32 26

Health Care 43 12

Industrials 139 86

Information Technology 5 4

Materials 109 85

Utilities 25 14

Firms 408 259

As shown by Table 3, firms with at least one CCUS patent are quite distributed among

GICS sectors, although 48.3% of the companies operate in Energy, Utilities and Materials,

which include many carbon-intensive industries.
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4.3 Variables and descriptive statistics

In this section, we present the variables used in the analyses and the descriptive statistics.25

We compute the descriptive statistics over the period 2010-2022 for the full estimation sam-

ple. Table 4 describes the innovation and environmental variables, Table 5 presents the

firm-level economic and financial variables, Table 6, compares the innovation variables of

companies with high (above-median) and low (below-median) levels of carbon emissions. In

Appendix B, we report the Correlation matrix and in Table 14, the mean differences for

the sub-samples of firm with and without CCUS patents (i.e., those in the neighbouring

technology field as per IPC/CPC codes).

In Table 4, the main variable we use to describe CCUS patenting is CCUS pat, the firm-

year number of CCUS patents while CCUS dummy is the binary variable denoting whether

the firm i has filed 1 or more CCUS patents in year t. We also computed the stock of

patents (CCUS Stock) , the R&D stock (R&D Stock) and the stock of (non-CCUS) green

patents (Green stock), assuming an annual growth rate of knowledge capital of 8% and a

depreciation rate of 15%, in line with relevant literature (e.g., Colombelli et al., 2020[30]).

To estimate the firm market value model, the innovation variables are normalized by

fixed assets (R&D stock/Fix. Assets) or R&D expenditure (CCUS and green total patents

respectively CCUS/R&D stock, Green/R&D Stock). The patent stock, available on Orbis

platform, is normalized by total assets to account for size distortions, and transformed in log-

arithms (ln norm Pat Stock). Similarly, R&D is divided by total assets (R&D int), whereas

carbon emissions were transformed into logarithms.

25All variables are winsorized at 1% and 99% levels, as a standard practice to reduce the effect of possible
outliers in the data derived by Orbis.
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Table 4: Innovation variables and carbon emissions

Variable N Mean SD p50 p90 p99

CCUS pat 3,153 1.535 7.674 0 3 24

CCUS dummy 3,153 .2533 .4361 0 1 1

CCUS Stock 3,153 8.786 40.64 0 19.52 134.14

CCUS/R&D Stock 3,137 5.53e-06 .0000239 0 .0000104 .000108

Green pat 3,153 182.47 391.3 48 486 1715

Green dummy 3,153 .8233 .3814 1 1 1

Green stock 2,897 1,108.83 2,324.38 301.95 2,996.38 9,946.19

Green/R&D Stock 2,885 .00078 .003058 .0001699 .0016368 .008916

ln norm Pat Stock 3,153 .0009371 .001405 .000483 .002271 .007407

R&D int 3,153 .0294 .03999 .01899 .06761 .1766

R&D stock/Fix. Assets 2,031 .9547 1.9186 .4736 2.2466 8.4629

ln Scope1 3,153 13.0460 2.6885 12.8479 16.8162 18.6918

ln Scope2 3.044 12.712 1.918 12.852 15.084 16.249

ln Scope3 2,223 14.261 3.341 14.72 18.64 20.17

Policy PCA 3,153 1.557 1.055 1.482 3.052 3.640

TAXCO2 3,153 1.340 1.939 1 6 6

RD SUB 3,153 3.768 1.421 3 6 6

TRADESCH CO2 3,153 1.203 .9993 1 3 3

Sample All firms

Table 5 describes the firm-level variables. To measure firm size we use the (log of)

total assets (ln Tot Assets). The yearly growth of revenues (Rev growth) is included to

capture the short-term firm growth while the market-to-book ratio (TobinsQ) accounts for

growth and profitability prospects as valued by the equity market. The return on asset

(ROA) - the ratio between net income over total assets - measures accounting profitabil-
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ity. In order reduce the noise over the long panel period, we use the three-year mov-

ing average of ROA (ROA 3y MA). We apply the same transformation to revenue growth

(Rev growth rate 3y MA). To capture the volatility of profitability, we calculated the three-

year moving standard deviation of ROA (ROA 3y sd). Leverage, the ratio of long term

debt to total liability, accounts for firm indebtedness and financial structure. Finally, capi-

tal intensity, a proxy for asset tangibility (Cap Intensity) is the ratio of total assets to the

number of employees and labour productivity (Lab Productivity) is revenues by employee.

Finally, the annual total returns (Tot Ret) are sourced from the Eikon Refinitiv platform

and Tot Ret sd is the three-year standard deviation of returns that we use as a proxy of firm

risk.

Table 5: Firm-level control variables

Variable N Mean SD p50 p90 p99

ROA 3y MA 3,140 .0446 .0505 .0427 .1021 .1916
Cap Intensity 3,153 1065.18 1752.07 584.89 2198.87 10315.69
ln Tot Assets 3,153 16.576 1.27 16.63 18.36 18.36
Leverage 3,153 .1917 .1230 .1781 .3399 .5847

Rev growth rate 3y MA 3,121 .0347 .1696 .0228 .1341 .4777
Rev growth rate 2,972 .0487 .448 .01072 .2081 .7912
Lab Productivity 3,142 589.78 588.46 394.83 1062.88 3180.383

ROA 3y sd 3,118 .0187 .0266 .011 .0403 .120
TobinsQ 2,982 .999 .992 .701 2.019 5.255
Tot Ret 2,868 12.08 35.852 9.13 53.016 124.66

Tot Ret sd 2,611 29.54 23.345 24.233 52.657 121.90
Sample All firms

Finally, in Table 6, we test whether the CCUS patent intensity of firms with high (above

the median) and low (below median) scope1 carbon emissions significantly differs, and we

find that firms with a higher climate impact are significantly more active in CCUS and green

patenting.
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Table 6: Mean differences between high- and low-carbon emitting firms (T-tests)

!

CCUS firms µabove − µbelow µabove µbelow tstat N

CCUS pat 1.77 2.43 0.66 6.54*** 3,153
Green pat 162.24 264.95 102.71 11.89*** 3,153
R&D int -0.0202 0.019 0.039 -14.61*** 3,153

t statistics in parentheses

* p < 0.05, ** p < 0.01, *** p < 0.001

5 Empirical strategy and results

5.1 Determinants of CCUS innovation

5.1.1 Empirical strategy

When we ask what determines the intensity of patenting, we implicitly exclude firms that,

having a technological and scientific know-how that neighbors that of CCUS do not file a

patent in the specific CCUS field. This approach might generate a sample-selection bias

where the factors driving the patenting decision - for example unobservable specialization

costs - may also affect the intensity of their research effort but are not accounted for. There-

fore, our dataset includes companies that innovate in the broader CPC/IPC technological

field (i.e., the higher hierarchical class) that contains the CCUS group of patents as a sub-

set. Precisely, we add firms that filed patents featuring at least one IPC/CPC code relative

to the same sub-classes (level 3) that include CCUS technologies, as shown in Figure 2 in

Appendix A.

Our assumption on the innovating behavior is that every year companies face two se-

quential decisions: 1) whether or not to file a CCUS patent (extensive innovation margin);

2) how much to invest in CCUS innovation, i.e., how many patents to file, conditional on

the positive patenting decision (intensive margin). To address this problem empirically,
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we use the Zero-inflated Poisson (ZIP) regression model (see Noailly & Smeets, 2015)[74],

which conveniently combines the process that governs the realization of the binary outcome

(patents vs. non-patent) with the process explaining the realization of the number of patents

filed conditional on patenting. The ZIP model is based on the assumption that a zero patent

outcome is the realization of two different processes. The “structural” zeroes are realized

when the firm decides not to file a patent in a given year (say because the expected profits

from innovation minus the costs of patent application do not exceed the innovation invest-

ment), and are modeled by a probit regression. The “standard” zeroes occur when the firm

does not file a patent in that year due to some exogenous factors (e.g., the innovation has

not yet reached the required TRL - technology readiness level, or the R&D efforts were

unsuccessful), and are modeled by a Poisson regression.26 Since the dataset includes both

CCUS patenting firms and firms patenting in neighboring technologies, we assume that all

sampled firms can decide, every given year, whether to file for a patent (we use the priority

year to capture the year of filing decision) and we can discriminate between firms deciding

not to patent in a given year and firms that failed to do so.

To model CCUS patenting behavior and capture cross-firm heterogeneity, we rely on a

large set of firm-level variables such as size, profitability (ROA) and its variability, revenue

growth, financial leverage and capital intensity. The patent stock and the normalized R&D

expenditure account for the firm’s innovation capacity. Moreover, in line with the literature

26The zero-inflated Poisson model resembles the Heckman selection model but has less restrictive normal-
ity assumptions, does not require an exclusion restriction in the second step and can deal with count data
(without logarithmic transformations) that better fit our firm-level patent data. Moreover, the zero-inflated
model does not censor observations in the second step but, assuming two latent groups (an Always-0 Group
and a Not Always-0 Group), it proceed in three steps: it models membership in the latent groups, then it
models counts for those in the Not-Always 0 group, and ultimately it computes observed probabilities as a
mixture of the probabilities of the two groups (Long & Freese, 2014[64]). See Appendix C for a derivation
of the model.
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on eco-innovation, we include labor productivity as a proxy of human capital, and a dummy

denoting that the firm has also green patents (other than CCUS patents), to control for

past activity and experience in the green knowledge sector. We lag all variables one year to

reduce concerns about reverse causality.

As CCUS patents appear specifically intertwined to climate risk problems related to CO2

emissions and to the bad reputation of high polluting firms, two natural drivers of CCUS

innovation are Scope1 CO2 emissions (lagged one, two, and three years)27 and environmental

regulation. In the first step, when estimating the extensive margin (i.e., membership in the

latent groups), we include lags of CO2 emissions in levels because the patenting decision

is more likely driven by the magnitude and continuity of the environmental riskiness of

the firm. To proxy for the country-level regulatory policy, we add three sub-indices of the

Environmental stringency index (OECD) specifically addressing carbon emission issues, such

as CO2 tax, Emission Trading Schemes and Low carbon R&D subsidies, which are likely to

motivate CCUS innovation. In the second step, when estimating patent intensity (intensive

margin), we enter the three lags of CO2 emissions as first-differences to capture the shot-term

incentives that may drive the intensity of the patenting process.

Because the cumulated knowledge stock cannot be considered strictly exogenous, we rely

on the pre-sample mean estimator by Blundell (1995)[13], which accounts for firm fixed effects

by the pre-sample mean of the dependent variable.28 Therefore, we add the mean of CCUS

27We lag carbon emissions not only to address reverse causality concerns, but also to account for the fact
that research activity needs time to reach the results that allow firms to file a patent. We stop at t-3 to
avoid losing too many observations. Moreover, in our last specification, we test the joint significance of the
three lags to investigate the dynamics of the process, controlling for the full trend of CO2 emissions.

28As highlighted by Blundell et al. (2002)[13], in count data models with individual specific constants,
the Poisson maximum likelihood estimator is inconsistent for the parameters of interest if the regressors are
predetermined, hence not strictly exogenous.
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patenting in the period 2000-2011 as a proxy of the time-invariant cross-firm heterogeneity

in innovation capacity, and a binary variable denoting if the firm has patented in the pre-

sample period (see also, for recent applications, Noailly & Smeets, 2015[74] and Majo & van

Soest, 2011[65]).

As a robustness check, we estimate the same specifications using the Zero-Inflated Neg-

ative Binomial model (ZINB). Furthermore, we estimate the intensity of patenting using a

standard Poisson count data model using the sub-sample of firms that have filed at least one

CCUS patent in the period. The results are in Appendix E.1.

5.1.2 Results

In Tables 7 and 8 , we report the results of the ZIP regressions augmented with the pre-sample

mean estimator. Recall that in the ZIP model, the extensive margin in Table 7 estimates the

probability that firm i files a CCUS patent in year t, while the ”intensive” margin in Table

8 estimates how many patent firm i files in year t conditional on the patenting decision.29.

29Note that in the extensive margin the standard ZIP model predicts the probability to have a zero
outcome (i.e., probability not to patent). For the readers’ convenience, we inverted the signs of the coefficients
in Table 7.
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Table 7: ZIP - Extensive margin

1st-step

Probit regression

(1) (2) (3) (4)

CCUS pat=1 t-1 t-2 t-3 L all

ln Scope1t−1 0.146*** 0.148

(0.001) (0.255)

ln Scope1t−2 0.141*** -0.0672

(0.002) (0.722)

ln Scope1t−3 0.139*** 0.0665

(0.003) (0.554)

TRADESCH CO2t−1 -0.156** -0.140* -0.166** -0.167**

(0.030) (0.051) (0.022) (0.021)

TAXCO2t−1 0.0665* 0.0567 0.0748* 0.0763*

(0.095) (0.163) (0.068) (0.062)

RD SUBt−1 -0.0538 -0.0489 -0.0491 -0.0515

(0.306) (0.335) (0.339) (0.321)

Green dummyt−1 1.180*** 1.157*** 1.166*** 1.158***

(0.000) (0.000) (0.000) (0.000)

ln norm Pat Stockt−1 -6.908 -16.93 -17.80 -13.02

(0.904) (0.674) (0.664) (0.754)

Rev growth rate 3y MAt−1 1.517** 1.799** 2.006** 1.937**

(0.037) (0.035) (0.020) (0.025)

Leveraget−1 -1.775*** -1.394** -1.213* -1.217*

(0.005) (0.035) (0.075) (0.075)

ln Tot Assetst−1 -0.0841 -0.106 -0.0900 -0.0975

(0.260) (0.171) (0.259) (0.224)

R&D intt−1 -5.298* -4.307 -4.379 -4.037

(0.054) (0.137) (0.137) (0.164)

Cap Intensityt−1 -0.000141 -0.000152 -0.000141 -0.000145

(0.271) (0.158) (0.190) (0.172)

Lab Productivityt−1 -4.59e-06 5.81e-05 8.34e-05 8.45e-05

(0.983) (0.749) (0.645) (0.645)

ROA 3y MAt−1 -0.173 -0.265 -0.589 -0.602

(0.891) (0.844) (0.670) (0.663)

pre sample ccus 0.471** 0.477*** 0.468*** 0.462***

(0.012) (0.000) (0.000) (0.000)

pre sample ccus dummy 0.306 0.356** 0.433** 0.437**

(0.132) (0.043) (0.013) (0.013)

H0: t-1 t-2 t-3 = 0 10.43***

Observations 2,877 2,755 2,630 2,630

Year FE Yes Yes Yes Yes

GICS FE Yes Yes Yes Yes

N clust 395 377 360 360

Robust pval in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Table 8: ZIP - Intensive Margin

2nd-step

Poisson regression

(1) (2) (3) (4)

CCUS pat count D1 D1t−1 Dt−2 D all

D.ln Scope1 0.199 -0.0294

(0.165) (0.882)

D.ln Scope1t−1 0.0641 -0.194

(0.489) (0.292)

D.ln Scope1t−2 0.201** 0.318***

(0.012) (0.005)

Green dummyt−1 -0.375 -0.292 -0.385 -0.383

(0.269) (0.312) (0.204) (0.198)

ln norm Pat Stockt−1 136.1*** 146.9*** 160.1*** 160.7***

(0.005) (0.002) (0.001) (0.001)

Rev growth rate 3y MAt−1 -2.261*** -2.555*** -2.782*** -2.774***

(0.000) (0.001) (0.000) (0.000)

Leveraget−1 -1.839** -2.490*** -2.501*** -2.496***

(0.034) (0.003) (0.003) (0.003)

ln Tot Assetst−1 0.108 0.149* 0.142* 0.143*

(0.196) (0.070) (0.085) (0.082)

R&D intt−1 -0.612 -4.442 -4.583 -4.876

(0.914) (0.429) (0.415) (0.382)

Cap Intensityt−1 -0.000373** -0.000340** -0.000319*** -0.000322***

(0.020) (0.013) (0.007) (0.007)

Lab Productivityt−1 0.000694** 0.000584*** 0.000546*** 0.000543***

(0.013) (0.008) (0.005) (0.006)

ROA 3y MAt−1 -3.470** -3.125** -3.295** -3.260**

(0.041) (0.045) (0.027) (0.030)

pre sample ccus 0.0738*** 0.0734*** 0.0733*** 0.0732***

(0.000) (0.000) (0.000) (0.000)

pre sample ccus dummy 1.309*** 1.183*** 1.140*** 1.138***

(0.000) (0.000) (0.000) (0.000)

H0: D1 LD1 LD2 = 0 8.85**

Observations 2,877 2,755 2,630 2,630

Year FE Yes Yes Yes Yes

Country FE Yes Yes Yes Yes

N clust 395 377 360 360

Robust pval in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Starting from the extensive margin, we find that the amount of (log) emissions (ln Scope1t−1)

is a significant (and positive) predictor of the decision to innovate in the CCUS sector. The

evidence holds when we test, separately, three lags of the variable, to account for a delay in

the patenting response. When we include all three lags in Column (4), we find no significant

evidence, but the F-test at the bottom of the table tells us that the three coefficients are

jointly significant. To confirm the relevance of environmental pressure in the extensive mar-

gin, we find that the decision to patent is positively related to carbon pricing ( TAXCO2t−1)

and negatively related to the tightness of Emission Trading Schemes ( TRADESCH CO2t−1).
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Although this latter result seems counterintuitive, we must consider that ETS schemes do

not provide, to date, for direct remuneration of negative emissions, thereby reducing the in-

centives to invest in these technologies30. Finally, we find that the coefficient on Low Carbon

R&D subsidies ( RD SUBt−1) is insignificant.

Results in Table 7 also show that having previously filed patents in green technologies

(Green dummy) positively affects the probability of filing CCUS patents, while the coefficient

on the generic patent stock is insignificant. These results suggests the decision to innovate

in CCUS is driven by the urgency to address a “dirty” environmental profile as well as

by firm-specific innovation capacity and experience in green technologies. Turning to the

other control variables, we find that the probability of CCUS patenting is higher for high-

growth firms (Rev growth rate 3y MAt−1), less levered (Leveraget−1) and smaller companies

(ln Tot Assetst−1). Perhaps surprisingly, R&D intensity (R&D intt−1) is negatively related

to the decision to innovate in CCUS (but the coefficient is significant only once). The finding

of insignificant, ambiguous - even negative - relationships between general R&D expenditure

and eco-innovation has already been addressed by the literature. For example, it has been

argued that technological capability is only one of the drivers of eco-innovation, and that

the higher complexity of the other determinants may dilute its relationship with cyclical

R&D expenditures31. Furthermore, as suggested by (Wang & Hagedoorn, 2014)[95] this

result may also depend on the delayed effect of research investment and the readiness of

30ETS policies are diversified across countries; for instance, from 2018, the US tax credit
has been ruled by the 45Q scheme for Carbon Sequestration https://www.iea.org/policies/

4986-section-45q-credit-for-carbon-oxide-sequestration that provides compensations between $50
and $85 dollars per ton of sequestrated industrial emissions in the form of tax credits (hence incentiviz-
ing mostly high-revenue firms, https://www.mckinsey.com/industries/oil-and-gas/our-insights/

scaling-the-ccus-industry-to-achieve-net-zero-emissions. Conversely, the EU ETS does not com-
pensate negative emissions at all yet.

31See Diaz-Garc̀ıa et al., 2015[35] for review and discussion of past results.
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innovation to become a patent. Finally, the probability to file CCUS innovations seems to

increase if the firm has previously patented in the same field (pre sample CCUS dummy)

and the greater the patenting intensity in the pre-sample period (pre sample CCUS ). This is

indicative of a “specialization effect”, in line with well-established evidence that technological

innovation is a path-dependent activity (in the evolutionary economics tradition, see the

seminal contributions of Patel & Pavitt, 1997[79] and Dosi & Nelson, 2010[37]; more recently,

with reference to green innovation, see also Aghion et al., 2019)[2].

In Table 8, the dependent variable is the number of CCUS patents filed by the firm in

a year. When we look at the relationship between patent filings and the growth in carbon

emissions (D.ln Scope1 ), we find that only the coefficient in Columns (3) is statistically

significant, suggesting a medium-term incentive to file more patents is in place (i.e., between

t-2 and t-3) when the company is active in CCUS technology. The evidence holds in Column

(4), where we test the joint significance of the three lagged differences, as shown at the

bottom of the table. Interestingly, green patenting is negatively signed (though insignificant),

potentially indicating a substitution effect when firms have to allocate specific R&D resources

to different, and costly, projects. In contrast with the extensive margin, now patent stock

(ln norm Pat Stockt−1) enters with a positive sign suggesting that patent intensity eventually

depends on the experience and continuity of the firm’s innovative effort in general while the

positive and significant coefficients on the pre-sample mean and dummy show that sector-

specific technological specialization is also crucial.

Turning to the other control variables, we find that larger companies (ln Tot Assetst−1)

that grow less (Rev growth rate 3y MAt−1) appear to file more CCUS patents. Moreover, the

intensity of CCUS patenting is positively associated to labor productivity (Lab Productivityt−1)
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and negatively related to profitability (ROA 3y MAt−1). Finally, we find that patent inten-

sity is higher in less levered (i.e., more capitalized) companies, suggesting that these firms

have to rely more on the equity market, not only because they are innovative, hence riskier,

but also due to their double externality problem. The different pattern of results between

intensive and extensive margins supports our choice to design our research question as a

two-step process. Hence, if the choice to innovate appears to be mainly driven by environ-

mental, policy, and technological factors, patent intensity is eventually constrained by cost

efficiency and financial constraints related to a double externality problem.

To summarize, our empirical analysis shows that firms patenting in CCUS technolo-

gies have technological know-how and experience in the field of eco-innovation and, more

importantly, that they respond both to environmental policies and to their sector-specific

climate risk, as shown by results on CO2 emissions. Our findings suggest that CCUS can

be assimilated to other eco-innovations, as also implied by the evidence that the decision

to patent and the intensity of patent activity are explained by different drivers (Kesidou et

al., 2012)[58]. These results hold to an array of robustness tests. First, due to high persis-

tence of carbon emissions, we used emission intensity (computed as the ratio of emissions

to sales) instead of the log of the total amount. Second, because the different structure of

the lagged emissions implies that we estimate our models on (slightly) different samples, we

estimate all regressions with the most restricted sample (i.e., t-3) in Column (4), N=1526.

Third, we re-estimate the intensive margin regressions using the Pseudo Poisson Maximum

Likelihood (PPML) estimator32 as an alternative to the ZIP model. Fourth, we estimate

32See Silva et al., 2006[88] and 2011[87]
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all regressions with zero-inflated negative binomial regressions.33. Results of the robustness

tests in Appendix E.1 confirm the evidence above.

5.2 CCUS patenting and stock market performance

Our second research question addresses the impact of firm’s CCUS patent intensity on their

performance in the stock market. The underlying issue is whether financial markets are

willing (or capable) to acknowledge and reward these technologies, thereby embracing a

wider range of objectives from shareholder value to shareholder welfare (Hart and Zingales,

2017)[50], from investors and governments’ climate concerns, as tighter environmental poli-

cies may jeopardize firms’ profitability. This would provide a significant incentive to innovate

in CCUS technologies in addition to environmental policies. To this purpose, we estimate,

first, the relationship between CCUS patents and firm value and then their relationship with

total stock returns. As our data includes not only firms with a CCUS patenting activity,

but also those with patents in a neighboring research area (see Section 4 and Appendix A),

our analysis contrasts both companies with more or less CCUS patents and firms with and

without CCUS patents.

5.2.1 CCUS patenting and firm value

Our empirical model draws on a recent contribution by Colombelli et al. (2020)[30], who

estimate the impact of the generation of environmental (green) technologies inventions (prox-

ied by patents) on firm market value for a panel of European countries, and find that firm

market value is positively related to green patents. Following Griliches (1981)[47], Hall

33We thank one referee for suggesting us to perform this analysis.
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(1999)[48] and Hall et al. (2005)[49], we also model the firm’s market value as a function of

a combination between tangible and intangible assets, as in equation (1):

Vit = bt(Ait + γKit)
σ (1)

where Vit is the market value of firm i at time t, Ait is the value of tangible assets, Kit

denotes the firm’s knowledge, i.e., intangible assets, and the parameter σ allows for non-

constant returns to scale. Approximating intangible assets by the number of (CCUS and

Green) patent stocks and by the R&D stock, and lagging one year to control for potential

reverse causality, our baseline specification becomes (see Appendix D for the derivation of

the estimating model):

log Qit = log bt+γ1
R&D stockit−1

Ait−1

+γ2
CCUS stockit−1

R&D stockit−1

+γ3
Green stockit−1

R&D stockit−1

+βControlsit−1+ϵit

(2)

Where logQit−1 is the logarithm of the Tobin’s Q, the R&D to tangible assets ratio captures

the firm’s commitment to generate new knowledge, CCS stockit−1

R&D stockit−1
measures the actual patent-

ing yield of the specific CCUS technology, i.e., our variable of interest, and Green stockit−1

R&D stockit−1
is its

counterpart with green (non-CCUS) technologies, that we enter as a control variable.34 ϵit is

the random stochastic error with zero mean. Both are lagged one year to account for a delay

in the response of average stock returns35. We then add the one-year lag of scope 1 CO2 emis-

34To build the R&D, CCUS and green patent stocks, we used the perpetual inventory method, assuming
a depreciation rate of 15% (see also Hall, 1999[48]).

35Notably, in our robustness analysis we address the possibility that a distortion may arise when the lag
between the actual application and the disclosure of the news to the public is longer than one year, e.g.,
18 or 24 months. Since we have no access to information about the disclosure date of each patent, to deal
with this potential time inconsistency we re-estimate our models by applying both (i) a two-year lag to all
patent variables (ii) a mix between the one and two-year lag to accommodate a (more plausible) 18 month
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sions and its interaction with CCUS patent intensity to investigate not only how the stock

market responds to CCUS (and green) patenting, but also whether it responds differently to

patents filed by companies with higher levels of carbon emissions, i.e., higher climate risk.

Indeed, climate concerns may irk not only the sensitivity of environment-friendly investors

but also of profit-motivated shareholders who dread the backlash of a costly conversion of

the production process.

We add a large set of control variables that includes firm size, financial leverage, account-

ing profitability (3-year average and standard deviation), revenue growth, labour productiv-

ity, and capital intensity. To control for external regulatory pressure, we use 5 sub-indices

of the OECD Environmental Policy Stringency (EPS) specifically related to carbon emis-

sion problems.36. For conciseness, we insert a data reduction of these indices obtained with

Principal Component Analysis, named Policy-PCA.37 This variable, being influenced by do-

mestic policy is also expected to capture idiosyncratic industry-related factors. The final

estimating model then becomes:

log Qit = log bt + γ1
R&D stockit−1

Ait−1

+ γ2
CCUS stockit−1

R&D stockit−1

+ γ3
Green stockit−1

R&D stockit−1

+ γ4 log scope1it−1 + βXit−1 + υs + νt + τc + ϵit

(3)

Column (1) includes industry, year, and country fixed effects, while estimates in Columns

time period. In particular, assuming that patent filings were uniformly distributed during the year, we could
identify the yearly count of disclosed patents as the sum of the patents filed in the first half of the previous
year (t-1 ) plus the filings in the second half of the year before (t-2 ). Results are in Appendix D, Table 22.

36CO2 Tax, CO2 ETS, Low Carbon R&D subsidies, Technology support policies, Diesel tax.
37We use the concise Policy-PCA measure to keep the interpretation of the results manageable, since this

variable enters both linearly and interactedly with carbon emissions.
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(2), (3) and (4) account for firm and year fixed effect estimates. Robust standard errors are

clustered at the firm level. Table 9 reports the results.

Table 9: Market performance: Tobin’s Q

ln Q (1) (2) (3) (4)

CCUS/R&D stockt−1 202.9 1.912 -2,780** -2,988**

(0.810) (0.996) (0.037) (0.024)

Green/R&D stockt−1 -4.831 3.825 3.318 27.84

(0.321) (0.236) (0.257) (0.199)

ln Scope1t−1 -0.0761*** 0.0124 0.0116 0.0130

(0.000) (0.553) (0.582) (0.536)

ln Scope1t−1#CCUS/R&D stockt−1 234.1** 252.9**

(0.040) (0.029)

ln Scope1t−1#Green/R&D stockt−1 -1.908

(0.268)

R&D stock/Fixed Ass.t−1 0.0207** -0.00581 -0.00584 -0.00574

(0.040) (0.600) (0.599) (0.605)

ln Tot Assetst−1 -0.0795*** -0.169*** -0.169*** -0.169***

(0.005) (0.007) (0.007) (0.008)

Leveraget−1 -0.682*** -0.312 -0.317 -0.312

(0.006) (0.201) (0.193) (0.202)

Cap Intensityt−1 8.59e-06 -7.49e-05* -7.63e-05* -7.76e-05*

(0.428) (0.079) (0.072) (0.066)

ROA 3y MAt−1 7.659*** 4.940*** 4.926*** 4.916***

(0.000) (0.000) (0.000) (0.000)

Policy pcat−1 0.0843*** 0.0707*** 0.0725*** 0.0724***

(0.002) (0.005) (0.004) (0.004)

ROA 3y sdt−1 0.810 -0.744 -0.752 -0.754

(0.529) (0.536) (0.530) (0.529)

Observations 2,546 2,546 2,546 2,546

Year FE Yes Yes Yes Yes

GICS FE Yes Yes Yes Yes

Country FE Yes Yes Yes Yes

Firm FE No Yes Yes Yes

r2 a 0.672 0.257 0.257 0.257

Number of firm id 349 349 349 349

Robust pval in parentheses

*** p<0.01, ** p<0.05, * p<0.1

In Column (1) and (2) the same model is presented without and with firm fixed effects

for comparability. In both columns, we find no direct association between firm value and

CCUS patenting (CCUS/R&D stockt−1), nor with green patenting (Green/R&D stockt−1) or

with R&D intensity (R&D stock/Fixed Ass.t−1).
38 CO2 emissions (ln Scope1t−1) enters with

38An interesting evidence comes from Faria et al. (2022)[40] who find a negative impact of green patents
on market value in a sample of firms in oil-related sectors.
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a negative and significant coefficient at a cross-sectional level, in line with the idea that the

stock market penalizes firms with heavier climate impact (see, for example, Matsumura et

al., 2014[67] or Perdichizzi et al., 2024[80]), but the variable turns insignificant in the FE

models.39 The environmental policy variable, Policy-PCA, is positive and significant in all

columns, suggesting that in countries where environmental policy is tighter, the stock market

anticipates that “brown” companies are prompted to adjust sooner to greener technologies.

This finding is consistent with evidence by Choi & Luo (2021)[28] that the impact of firm-

level emissions on market-value is negative and worse in countries with tighter environmental

policies. Finally, turning to control variables, we find that firm value is positively related

to accounting profitability (ROA 3y sdt−1), and negatively correlated with firm leverage

(Leveraget−1) and size (ln Tot Assetst−1).

Results become more informative in Columns (3)-(4), where we test whether the lack of

significance of the relationship between CCUS patents and firm value may depend on a non-

linearity, i.e., that the impact of patents may change depending on its level of “browness”.

When we add the interaction between CCUS patents and carbon emissions, results show

that CCUS patents enter with a negative coefficient, but the interactive term is positive and

significant. This suggests that CCUS patenting does affect the firm’s market value positively,

but only if the company is a high carbon emitter, hence more subject to the climate-transition

risk and to the need to convert, urgently, to less polluting technologies. More specifically, we

can calculate that, based on estimates in column 4, the negative effect of CCUS patenting

on the market-to-book ratio turns positive at a level of ln Scope1 emissions equal to 11.77,

39This is likely due to persistence, i.e., low variability in absolute terms over time of the emission variable
in levels.
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and that the number of firms exceeding the turning point is quite large, i.e., 261 out of 408

companies benefit from CCUS patenting in terms of market value.

Interestingly, we find no such significant effect with broadly-defined green patents, which

suggests that the stock market seems to value positively firms with higher climate risk

when they direct their research efforts towards environment-friendly, but sector-specific,

technologies.

5.2.2 CCUS patenting and stock returns

We now focus on total stock returns to investigate if CCUS patenting may mitigate the

so-called “carbon risk premium”, i.e., the higher expected returns required by investors for

holding stocks of brown companies that face, more than others, the climate-transition risk

(Bauer et al. 2022)[8]. In this literature, a relevant contribution is by Bolton and Kacperczyk

(2021)[14] who, within the traditional efficient capital markets theory, estimate the effect of

carbon emissions on stock returns using panel regressions rather than standard portfolio

methods (see, among the others, Pástor et al., 2021[77], and Bauer et al., 2022[8]). In this

paper, we follow their estimating approach, but depart from their research question, in that

we investigate the relationship between (annual) stock returns and CCUS patents. In fact,

our interest is for the market response to companies’ efforts to reduce their firm-specific

climate risk. To the extent that many CCUS patenting firms in our dataset operate in high

carbon-intensive industries, they are subject to a stronger environmental pressure that can

reduce their market value. In this context, patenting in fields such as CCUS could be a safe

strategy to mitigate their carbon risk, and we expect that it should reduce the stock market

premium.
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In our analysis, the stock returns of firm i in year t are regressed on the number of CCUS

patents, the log of direct carbon emissions, a vector of control variables and Policy-PCA our

summary measure of environmental stringency policies related to decarbonization issues:

Tot Retit = β0 + β1CCS patentsit−1 + β2logscope1it−1

+ β3EPSit−1 + γControlsit−1 + µi + λt + ϵit

(4)

Table 10 reports the results of panel regressions that include a large set of firm-level

variables typical in the financial literature estimating stock returns regressions. The log of

total asset (ln Tot Assetst−1) is a measure of firm size, the Tobin’s Q (TobinsQt−1) is a proxy

of growth prospect, the standard deviation of the stock returns (Tot Ret sdt−1) measures the

company’s risk, and the level (ROAt−1) and 3-year standard deviation (ROA 3y sdt−1) of the

return on assets measure profitability and its volatility while the financial leverage controls

for the capital structure. In addition, given our focus on research activity, we include a

Green dummy to denote if the firm has filed a green patent in year t-1, the normalized R&D

expenditures (R&D intt−1), and the capital-labour intensity (Cap Intensityt−1) and labour

productivity (Lab Productivityt−1) to control for the production function. Finally, all esti-

mated models include firm, and year fixed effects interacted with GICS sectors to account for

time varying industry-specific technological trends and different exposure to climate concerns

(see, for example, Pástor et al., 2022[76]) and control for additional unobserved firm level

variables. ϵit is the error term. All RHS variables are lagged one year and robust standard

errors are clustered by firm. Also with stock returns regressions we test the robustness of

our results to a longer delay between the patent filing and the announcement to the market.

Results are in Appendix E.2, Table 26.
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Table 10: Market performance: Stock returns

Tot Ret (1) (2) (3) (4)

CCUS patt−1 -0.200 2.017** 1.986* 4.537**

(0.320) (0.046) (0.057) (0.016)

Green patt−1 9.61e-05 -2.23e-06 0.00466 0.000906

(0.984) (1.000) (0.908) (0.982)

ln Scope1t−1 -0.583 -0.499 -0.469 -0.369

(0.635) (0.685) (0.710) (0.771)

ln Scope1t−1#CCUS patt−1 -0.148** -0.146** -0.272***

(0.019) (0.024) (0.008)

ln Scope1t−1#Green patt−1 -0.000327 -8.27e-05

(0.905) (0.976)

Policy pcat−1 -5.026*** -5.085*** -5.088*** -4.658***

(0.002) (0.001) (0.001) (0.004)

Policy pcat−1 #CCUS patt−1 -0.325*

(0.051)

TobinsQt−1 -8.251*** -8.334*** -8.349*** -8.305***

(0.009) (0.009) (0.009) (0.009)

R&D intt−1 280.5** 282.4** 282.4** 282.5**

(0.014) (0.014) (0.014) (0.014)

ln Tot Assetst−1 -8.532* -8.417* -8.438* -8.313*

(0.051) (0.053) (0.054) (0.057)

Leveraget−1 10.90 10.85 10.83 10.53

(0.581) (0.583) (0.584) (0.593)

Cap Intensityt−1 0.000669 0.000653 0.000655 0.000693

(0.611) (0.621) (0.621) (0.602)

ROAt−1 -43.05 -42.65 -42.68 -42.38

(0.327) (0.332) (0.332) (0.335)

Tot Ret sdt−1 0.554*** 0.554*** 0.554*** 0.554***

(0.000) (0.000) (0.000) (0.000)

ROA 3y sdt−1 -39.61 -39.53 -39.59 -38.78

(0.400) (0.401) (0.401) (0.410)

Lab Productivityt−1 -0.00120 -0.00107 -0.00108 -0.00112

(0.834) (0.853) (0.852) (0.845)

Observations 2,587 2,587 2,587 2,587

Number of firm id 347 347 347 347

Firm FE Yes Yes Yes Yes

Year FE Yes Yes Yes Yes

GICS FE Yes Yes Yes Yes

Year X GICS FE Yes Yes Yes Yes

r2 a 0.263 0.263 0.263 0.263

Robust pval in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Results in Column (1) show that CCUS patents have no significant impact on total

returns, neither have green patenting and direct carbon emissions. However, in Columns (2)-

(4), when we allow for non-linearity in the relationship between CCUS patents and carbon

emissions, the CCUS coefficient turns positive and significant while the interaction enters
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with a negative and significant coefficient.40 This evidence suggests that, CCUS patents per

se, are associated with higher stock returns, i.e., raise the premium requested by the market

to invest in these companies, partly due to their implicit connection with climate risk and

partly due to the (usual) high uncertainty and costs associated with patent activity.

However, the negative and significant interaction with CO2 emissions tells us that, for

high emitters, CCUS patents reduce the carbon risk premium. Considering the forward-

looking nature of the stock market, this suggests that innovating in CCUS technologies

is viewed as promising enough to lower, in perspective, the pressure by regulators and

environmentally-friendly investors on companies in most polluting sectors.

In Column (3), we add the interaction between green patents and carbon emissions,

but neither the linear term nor the interaction are significant, while the evidence on CCUS

patents still holds. Finally, in Column (4), we focus on the impact of environmental pol-

icy by interacting Policy-PCA with CCUS patents, and find that the mitigation effect of

CCUS patents is stronger in countries where environmental policies are tighter, which sug-

gests that capital markets, though globalized, take into due account also the local stance of

environmental policy.41

Using our results in Table 10, we can calculate quantitative effects of the impact of

CCUS patenting and derive some policy implications. So, in Col. (3), the positive effect of

40This finding is consistent with the negative sign on CCUS patents and positive coefficient on the
multiplicative term in the previous Tobin’s regressions

41Interestingly, this result allows some speculations with regard to a possible different market response
to CCUS patenting. While the mitigation of the carbon premium for high emitting companies (see columns
(2), (3), (4)) might suggest an incentive to lock-in into carbon-intensive technological pathways, the result
that the mitigating effect is significantly larger where climate policy is tighter (column (4)) might suggest
that the market rewards high-emitters not for innovation efforts in CCUS technologies that would lock
them in in carbon intensive activities, but for investing in alternative, carbon removal options. These
speculations suggest that further, more specific, analysis is required to disentangle the complex nature of
CCUS technologies and its new technological pathways.
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CCUS patents on total returns turns negative (thus reducing the risk premium) at a value

of ln Scope1 emissions of 13.63, and the number of firms surpassing the turning point is 162

out of 408. If we use the coefficients in Col. (4), where we also account for the effect of

environmental policy (via the interaction with Policy-PCA), the turning point is at 14.91 and

95 are the firms that will see a reduction in their risk premium (hence a lower cost of equity)

thanks to their patenting activity. With a simple exercise of comparative statics, we find that

if Policy-PCA went to zero - i.e., no environmental constraints at all - the number of firms

benefiting from their CCUS patenting would fall to 35 while, should policy become most

stringent, this number would jump to 221. Turning to control variables, we find that stock

returns are positively related with their variability and negatively related with the market-

to-book ratio in line with the literature (e.g., Bolton and Kacperczyk, 2021[14]). Moreover,

R&D intensity enters with a positive and significant coefficient, reflecting investors’ concern

about high uncertainty and risk related to both the standard research activity and the CCUS

technology-specific risks.42

Overall, our finding are in line with the risk framework described by Angelo & Johnston

(2023)[5], whereby firms’ innovative skills are correlated to lower future returns as a conse-

quence of the compensation of the related risk. However, our results add further insights by

showing that the pattern of the perceived risk is not constant across firms but depends on

their environmental profile and on how strongly innovation is needed for an improvement,

in other words on how tight the climate policy is.

42To further explore the propensity of firms with very high emissions to invest in these technologies, we
re-estimated column (4) of Table 10, accounting for a quadratic effect of carbon emissions, but we found that
the coefficients are insignificant, both linearly and interactedly with CCUS patents. Then we also tested
whether the firm’s investment in R&D may vary with CO2 emissions, i.e. increase (or decrease) with the
brownness of the company. We found no evidence of such non-linear effect, but all other results remain
unchanged. We thank one Reviewer for suggesting these further in-depth analyses.

43



6 Conclusion

This paper studies the factors influencing firms’ decisions to innovate in Carbon Capture and

Storage (CCUS) technologies and the impact of CCUS patenting on their performance in the

stock market. Although CCUS is often viewed as key to decarbonization, we highlight that

it comprises a wide range of very different technologies, from E.O.R. to D.A.C.C., so that the

debate is still open about whether it can be defined straightforwardly “green”. An overview

of the data reveals that many firms patenting in CCUS belong to carbon-intensive industries

and that CCUS patenting has increased starting from the year 2000, in particular from

2010. By leveraging on firm-level data on CCUS, green and generic patent activity, carbon

emissions, and financial performance, we identify key determinants as well as implications

for both firms and policymakers.

Our results show that higher levels of carbon emissions are positively related to both

the probability and the intensity of patenting CCUS innovations. Moreover, we find strong

evidence of path dependency in CCUS innovation: firms with prior patents in CCUS tech-

nologies are more likely to continue innovating in this field. The tightness of environmental

policy at the country level positively affects the decision to patent CCUS innovations. Al-

together, these results suggest that environmental pressure, as captured by both the firm-

specific climate risk and the country-level climate policy, acts as a significant driver of CCUS

innovation.

When we turn to financial performance, our analysis shows that CCUS patents are pos-

itively valued by the stock market when the patenting firm is a high carbon emitter. These

companies experience a reduction of the carbon risk premium, which suggests that investors
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recognize and reward efforts to improve their (poor) environmental performance in a risk-

mitigating perspective. When we calculate the quantitative effects of CCUS patenting, we

find that the stance of the local environmental policy is crucial in determining the magnitude

of the impact, i.e., the number of firms that, thanks to their patent activity in CCUS, ben-

efit from a reduction of the risk premium. Interestingly, we find no evidence of a significant

similar effect for green patents on market value and total return, suggesting that investors

perceive a sector-specific eco-innovation like CCUS as a more credible commitment for these

firms.

This study contributes to the literature on the impact of intangibles on firms’ perfor-

mance in the capital market. Our findings are in line with the literature showing that

eco-innovation positively affects firm’s market performance subject to tight environmental

pressure, provided the costs of shifting from traditional to eco-innovation are small. This

may be the case with CCUS, which adapts sector-specific technologies to the goals of the

green transition and opens a practical gateway strategy for brown companies that aim to

signal their commitment to sustainability.

Our research is subject to a number of limitations. For reasons of data availability it was

not possible to have a longer observation period, nor could we access to technology-specific

R&D data and to the disclosure date of patent filings. A longer time span, disaggregated

R&D data and a more exact timing would allow us more insights on the dynamics between

firm signaling and market response. Furthermore, it is important to add that the analysis of

the impact of these technologies on the environment, e.g. the amount of CO2 emissions at

the firm-level, was out of the scope of our study; nevertheless, this part of the story is crucial

for policymakers to evaluate appropriate strategies, and is part of our future agenda along
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with a more thorough and meticulous patent analysis that disentangles green and non-green

CCUS patents.

In conclusion, our study highlights the critical, and complementary, role of environmental

policy and stock market incentives in fostering CCUS innovation, clearly indicating that a

significant response - both by firms and investors - exists for solutions that build on knowledge

available at industry level that can be adapted to green purposes, despite the high costs of

research and project development. Hence, policymakers could design strategies that not

only regulate emissions but also actively promote eco-innovations that take into account

the potential of matching between sectoral specificity and suitable technologies, ensuring a

sustainable transition to a low-carbon economy.
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Appendices

A IPC/CPC classification

In the literature, patent retrieval may follow three main approaches, that is a search based

on keywords, (see Kaushal et al., 2021) [57], on technology-specific codes (see Camara et al.,

2016)[25] or on a combination of keywords and codes (see Liu et al.,2021)[63]. Each method

has its pros and cons: while searching keywords and codes could deliver more precise results,

many technologies not directly showing the right combination might be overlooked. Figure 2

shows the structure of IPC/CPC codes that we followed to retrieve our CCUS patent data.43.

Figure 2: WIPO code classification

Due to the hierarchical nature of WIPO categorization, some patents could be difficult

to isolate under single subgroups in relation to the type of technology they represent and

the use it is made of each of them[97]. By the same token, a search solely based on title

and abstracts is likely to leave out patents which are directly linked to the knowledge chain

that is the object of the study. Eventually, we decided to run a search based on technology-

specific codes, which should allow us to include all the patents that are, either completely

or in part, ascribed to CCUS technologies. Specifically, our research query covered each

patent (available on Orbis IP database) that contained, among its list of IPC/CPC codes,

at least one code relative to the sub-class to which CCUS technologies belong to; then, we

proceeded to isolate strictly CCUS patents based on technology-specific codes as provided

and categorized by WIPO (the so-called sub-groups).

Table (12) reports the codes and brief definitions of the sub-classes we used to identify

CCUS neighbouring technologies, while table (11) reports the IPC/CPC sub-groups codes

used by WIPO to identify CCUS technologies.

43Figure 2 shows the nested ordering of IPC/CPC categories with an example code from the actual CCUS
sample (B01D53/14, corresponding to gas separation by absorption). The full lists are in tables 12 and 11)
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Table 11: IPC/CPC WIPO groups of CCUS technologies

Code description

B01D53/14 by absorption
B01D53/22 by diffusion
B01D53/62 Carbon oxides
B65G5/00 Storing fluids in natural or artificial cavities

or chambers in the earth
E21F17/16 Modification of mine passages or chambers for

storage purposes, especially for liquids or gases
C01B31/20 Carbon dioxide
C01B32/50
E21B41/00 Equipment or details not covered by groups E21B15/00 - E21B40/00
E21B43/16 Enhanced recovery methods for obtaining hydrocarbons
F25J3/02 by rectification, i.e. by continuous interchange of

heat and material between a vapour stream and a liquid stream
Y02P40/18 Carbon capture and storage [CCS]
Y02P10/122 by capturing or storing CO2

Y02P90/70 Combining sequestration of CO2 and exploitation of
hydrocarbons by injecting CO2 or carbonated water in oil wells

Y02C20/40 Capture or disposal of CO2

Y02A50/20 Air quality improvement or preservation, e.g. vehicle
emission control or emission reduction by using catalytic converters

Table 12: IPC/CPC WIPO sub-classes used to identify CCUS neighbouring technologies

Code description

B01D separation
E21F safety devices, transport, filling-up, rescue, ventilation,

or drainage in or of mines or tunnels
C01B non-metallic elements; compounds thereof
E21B earth or rock drilling; obtaining oil, gas, water,

soluble or meltable materials or a slurry of minerals from wells
B65G transport or storage devices, e.g., conveyors for

loading or tipping, shop conveyor systems or pneumatic tube conveyors
F25J liquefaction, solidification, or separation of gases

or gaseous mixtures by pressure and cold treatment
Y02P climate change mitigation technologies in the production or processing of goods
Y02A technologies for adaptation to climate change
Y02C capture, storage, sequestration or disposal of greenhouse gases
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Table 14: Mean differences between CCUS and CCUS neighbouring firms (T-tests)

CCUS firms µCCUS µCCUS neighb µCCUS − µCCUS neighb t N

CCUS pat 2.253 0 2.253 7.75*** 3,153
Green pat 253.09 31.32 221.76 15.3*** 3,153
ln Scope1 13.58 11.91 1.67 16.9*** 3,153
norm Pat Stock .0011 .00068 .00037 7.04*** 3,153
R&D int. .025 .0384 -.0132 -8.75*** 3,153
Tot Ass. 16.79 16.11 .676 14.4*** 3,153
ROA 3y MA .0413 .0518 -.0105 -5.46*** 3,140
Tot Ret 12.18 11.85 .321 0.219 2,868
ln Q -.504 -.0558 -.448 -13.32*** 2,982
Leverage .185 .207 -.0219 -4.68*** 3,153
Cap Int 1047.78 1102.42 -54.64 -.81 3,153
Lab Prod 635.77 490.27 145.5 6.48*** 3,142

* p < 0.05, ** p < 0.01, *** p < 0.001
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C Zero-inflated poisson model

The extensive margin process is modeled by a probit model with the following form:

Pr(Patit = 0|µit) = 1− Φ(logµit) (5)

where

Φ(logµit) =
1√
2π

∫ logµit

−∞
e−

t2

2 dt (6)

and

µit = exp (β0 + β1 log scope1it−1 + β2envstrit−1 + γXit−1 + υs + νt + ηi) (7)

The main explanatory variable we use to model CCUS patenting behavior is the lagged

scope 1 emissions both in levels and in differences. We include the vector Xit−1 containing

a set of control variables at firm-level (ROA, revenue growth, log of total assets, leverage,

capital intensity, stock of general patents, normalized R&D expenditure). υs, νt and ηi are

sets of sector, year and firm fixed effects proxied by the Blundell pre-sample mean estimator

(Blundell et al., 1995)[13].

Once the decision is made by the firm, the following step is modeled by a log-linear

Poisson regression, typically suitable for count data (see Hausman et al., 1984)[53]. The

Poisson regression has the following form:

E(Patit|Xit, υs, νt, τc, ηi) = λit (8)

such that

λit = exp (β0 + β1 log scope1it−1 + γXit−1 + υs + νt + ηi + τt) (9)

Note that µit ̸= λit, i.e., the probit specification adds environmental stringency index as

a further country-level control to determine the probability of market entry. Furthermore,

all probit models feature the lagged scope 1 emissions and not the differences. For reasons

of (lack of) convergence, it was not possible to include country-level fixed effects in the

estimation of the extensive margin, though they were included in the intensive margin (τt).

It follows that the conditional mean of the model will be:

E(Patit|Xit, υs, νt, τc, ηi) = Φ(logµit)× λit (10)

Table 15 reports descriptive statistics of the CCUS patents’ pre-sample mean (Blundell

et al., 1995[12]; 2002[13]) and of the binary variable in the used sample.
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Pre-sample N Mean SD Min p25 p50 p75 p99 Max
CCUS mean 2,616 1.093113 3.195215 0 0 .0833333 .75 14.58333 38.75
CCUS dummy 2,616 .5940367 .4911714 0 0 1 1 1 1

Table 15: Pre-sample mean and associated dummy variable for CCUS patenting

To complement and support the empirical strategy described above, we explore the

differences between the two sub-periods (pre-sample means). The following tables thus

show the results from testing the mean differences of the main explanatory variables used

in the paper. In particular, Tables 16 and 17 respectively test the mean differences be-

tween sample period (2010-2022) and pre-sample period explanatory variables by groups

that did (CCUS pre sample dummy=1) and did not (CCUS pre sample dummy=0) patent

any CCUS innovation in the pre-sample period.

Table 16: Sample variables and past CCUS innovation groups (T-tests)

!

Full µCCUS d=1 − µCCUS d=0 µCCUS d=1 µCCUS d=0 tstat N

CCUS Pat 2.685 2.757 0.072 8.238*** 2,852
Green Pat 209.3 239.41 30.10 15.78*** 2,852
R&D int -.009 .0256 .0346 -5.896*** 2,825
ln Scope1 1.56 13.624 12.064 15.318*** 2,766
ln Tot Ass. .642 16.84 16.19 13.56*** 2,852
Lab. Prod. 203.66 664.75 461.08 8.95*** 2,845
Cap Int. 204.35 1139.9 935.54 3.27** 2,845
ROA -0.002 0.047 0.049 0.772 2,852

t statistics in parentheses

* p < 0.05, ** p < 0.01, *** p < 0.001

Table 17: Pre-sample variables past and CCUS innovation groups (T-tests)

!

Full µCCUS d=1 − µCCUS d=0 µCCUS d=1 µCCUS d=0 tstat N

R&D int -.0423 .0276 .0699 -18.63*** 12,409
ln Scope1 1.276 13.89 12.62 10.96*** 1,951
ln Tot Ass. 2.808 14.23 11.42 71.52*** 33,599
Lab. Prod. 172.72 510.77 338.05 21.21*** 16,458
Cap Int. 247.9 831.01 583.11 6.53*** 27,011
ROA 0.048 0.0066 -.0415 2.29* 22,863

t statistics in parentheses

* p < 0.05, ** p < 0.01, *** p < 0.001

T-statistics indeed confirm that a significant difference between firms from the two groups

is present both pre- and post-2011, thus empirically justifying the implementation of the

estimator to control for unobserved firm-level heterogeneity impact on CCUS patenting.
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D Market-to-book model

As anticipated in the relevant section, we draw from Griliches (1981)[47], Hall (1999)[48] and

Hall et al. (2005)[49]. Herein we show the step-by-step derivation of the model, which sees

the firm’s market value as a function of a combination of tangible and intangible assets, as

in equation (10):

Vit = bt(Ait + γKit)
σ (11)

where Vit is the market value of firm i at time t, Ait is the value of tangible assets, Kit

denotes the firm’s knowledge, i.e., intangible assets, and the parameter σ allows for non-

constant returns to scale. By dividing each term by Ait, applying logarithms on both sides

and allowing σ = 1, we can rearrange as in (11):

log Qit = log Vit − log Ait = log bt + log (1 + γ
Kit

Ait

) (12)

Where logQit denotes the logarithm of the Tobin’s Q. As in the original formulation of the

model, γ represents the shadow value of knowledge assets relative to the value of tangible

assets. Following Hall et al. (2005)[49], from equation (12), we modify the model by replacing

Kit with consistent measures of the knowledge assets, that is R&D and the stock of (CCUS

and Green) patents divided by the stock of R&D (all lagged to allow for time-consistency).

The underlying idea is to “capture the knowledge-creation process as a continuum going from

R&D to patents, which involves the sequential revelation of information about the value to

the firm of the innovation generated along the way” (Hall et al. (2005) p.24 [49]):

log Qit = log bt + log (1 + γ1
R&D stockit−1

Ait−1

+ γ2
CCUS stockit−1

R&D stockit−1

+ γ3
Green stockit−1

R&D stockit−1

) + ϵit

(13)

The ratio of R&D to tangible assets informs about the commitment of the firm to generate

new knowledge in each period, while CCUS stockit
R&D stockit

adds the actual patenting yield of the specific

CCUS technology. ϵit represents the random stochastic error with zero mean. Finally,

applying the approximation log(1+x) = x, valid for small enough x, we can rewrite (13) as:

log Qit = log bt + γ1
R&D stockit−1

Ait−1

+ γ2
CCUS stockit−1

R&D stockit−1

+ γ3
Green stockit−1

R&D stockit−1

+ ϵit (14)

Finally we augment the model with scope 1 emissions in log, the usual firm-level control vari-

ables such as size, profitability, productivity, indebtedness, capital intensity (vector Xit−1),

and year (νt ), country (τt) and sector (υs) fixed effects. The resulting baseline model is the

following:
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log Qit = log bt + γ1
R&D stockit−1

Ait−1

+ γ2
CCUS stockit−1

R&D stockit−1

+ γ3
Green stockit−1

R&D stockit−1

+ γ4 log scope1it−1 + βXit−1 + υs + νt + τc + ϵit

(15)

We can estimate equation (15) with OLS.

E Robustness analysis

E.1 Determinants of CCUS patenting

In this section we present a battery of robustness tests on the the results of the ZIP models.

Firstly, we deal with the issue of the size of the sample when using different lags of

the carbon emission variable. Tables 18 and 19 report the results of the ZIP models when

we use the sample restricted to keep the number of observations constant across the three

specifications (i.e., considering N from column (4)).
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Table 18: ZIP - Extensive margin

1st-step

Probit regression

(1) (2) (3) (4)

CCUS pat=1 L1 L2 L3 L all

L. TAXCO2 0.0719* 0.0711* 0.0748* 0.0763*

(0.082) (0.084) (0.068) (0.062)

L. RD SUB -0.0498 -0.0483 -0.0491 -0.0515

(0.343) (0.351) (0.339) (0.321)

L. TRADESCH CO2 -0.166** -0.164** -0.166** -0.167**

(0.022) (0.023) (0.022) (0.021)

L.Cap Intensity -0.000161 -0.000161 -0.000141 -0.000145

(0.130) (0.127) (0.190) (0.172)

L.ln Tot Assets -0.0947 -0.0894 -0.0900 -0.0975

(0.224) (0.255) (0.259) (0.224)

L.Rev growth 3y mean 1.737** 1.812** 2.006** 1.937**

(0.049) (0.040) (0.020) (0.025)

L.Lab Productivity 9.57e-05 9.63e-05 8.34e-05 8.45e-05

(0.614) (0.602) (0.645) (0.645)

L.ROA 3y mean -0.461 -0.487 -0.589 -0.602

(0.739) (0.724) (0.670) (0.663)

L.Leverage -1.154* -1.160* -1.213* -1.217*

(0.085) (0.084) (0.075) (0.075)

L.R&D int -4.360 -4.432 -4.379 -4.037

(0.125) (0.121) (0.137) (0.164)

L.Green dummy 1.136*** 1.141*** 1.166*** 1.158***

(0.000) (0.000) (0.000) (0.000)

L.ln norm Pat Stock -8.507 -12.06 -17.80 -13.02

(0.846) (0.775) (0.664) (0.754)

L.ln Scope1 0.145*** 0.148

(0.001) (0.255)

L2.ln Scope1 0.140*** -0.0672

(0.003) (0.722)

L3.ln Scope1 0.139*** 0.0665

(0.003) (0.554)

pre sample CCUS 0.455*** 0.460*** 0.468*** 0.462***

(0.000) (0.000) (0.000) (0.000)

pre sample CCUS dummy 0.447** 0.443** 0.433** 0.437**

(0.012) (0.012) (0.013) (0.013)

Year FE Yes Yes Yes Yes

GICS FE Yes Yes Yes Yes

H0: L1 L2 L3 = 0 10.43***

Robust pval in parentheses - SE clustered firm-level

*** p<0.01, ** p<0.05, * p<0.1

Table 19: ZIP - Intensive Margin

2nd-step

Poisson regression

(1) (2) (3) (4)

CCUS pat count D1 LD1 LD2 d all

L.Cap Intensity -0.000307** -0.000308*** -0.000319*** -0.000322***

(0.010) (0.010) (0.007) (0.007)

L.ln Tot Assets 0.142* 0.142* 0.142* 0.143*

(0.088) (0.088) (0.085) (0.082)

L.Rev growth 3y mean -2.441*** -2.511*** -2.782*** -2.774***

(0.001) (0.001) (0.000) (0.000)

L.Lab Productivity 0.000523** 0.000529*** 0.000546*** 0.000543***

(0.010) (0.008) (0.005) (0.006)

L.ROA 3y mean -3.263** -3.269** -3.295** -3.260**

(0.037) (0.034) (0.027) (0.030)

L.Leverage -2.625*** -2.596*** -2.501*** -2.496***

(0.002) (0.002) (0.003) (0.003)

L.R&D int -4.164 -4.175 -4.583 -4.876

(0.461) (0.459) (0.415) (0.382)

L.Green dummy -0.300 -0.313 -0.385 -0.383

(0.305) (0.296) (0.204) (0.198)

L.ln norm Pat Stock 145.6*** 148.6*** 160.1*** 160.7***

(0.002) (0.002) (0.001) (0.001)

D1.ln Scope1 0.0182 -0.0294

(0.881) (0.882)

LD1.ln Scope1 0.0766 -0.194

(0.401) (0.292)

LD2.ln Scope1 0.201** 0.318***

(0.012) (0.005)

pre sample CCUS 0.0730*** 0.0731*** 0.0733*** 0.0732***

(0.000) (0.000) (0.000) (0.000)

pre sample CCUS dummy 1.127*** 1.131*** 1.140*** 1.138***

(0.002) (0.001) (0.001) (0.001)

Year FE Yes Yes Yes Yes

Country FE Yes Yes Yes Yes

H0: D1 LD1 LD2 = 0 8.85**

chi2 450.44*** 454.22*** 459.37*** 466.37***

Log pseudolikelihood -2642.95 -2642.99 -2636.1 -2631.37

Observations 2,630 2,630 2,630 2,630

Number of firm id 344 344 344 344

Robust pval in parentheses - SE clustered firm-level

*** p<0.01, ** p<0.05, * p<0.1

Second, we test our results using carbon emission intensity instead of the log of the

amount of emissions. Again the evidence is consistent with our previous results. In Tables

20 and 21, the ZIP models use the alternative measure of emission intensity, computed as:

ln Scopeit−1

salesit−1

.
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Table 20: ZIP - Extensive margin

1st-step

Probit regression

(1) (2) (3) (4)

CCUS pat=1 L1 L2 L3 L all

L. TAXCO2 0.0529 0.0444 0.0602 -

(0.170) (0.263) (0.129) -

L. RD SUB -0.0460 -0.0431 -0.0431 -

(0.361) (0.385) (0.387) -

L. TRADESCH CO2 -0.142** -0.131* -0.158** -

(0.045) (0.070) (0.026) -

L.Cap Intensity -0.000172 -0.000179* -0.000175* -

(0.145) (0.090) (0.090) -

L.ln Tot Assets 0.0664 0.0396 0.0570 -

(0.269) (0.525) (0.361) -

L.Rev growth 3y mean 1.243* 1.409* 1.516* -

(0.063) (0.070) (0.057) -

L.Lab Productivity 8.99e-05 0.000146 0.000168 -

(0.650) (0.408) (0.337) -

L.ROA 3y mean -0.354 -0.387 -0.707 -

(0.779) (0.773) (0.607) -

L.Leverage -1.647*** -1.278* -1.090 -

(0.009) (0.053) (0.104) -

L.R&D int -6.304** -5.379* -5.569* -

(0.022) (0.059) (0.053) -

L.Green dummy 1.243*** 1.215*** 1.205*** -

(0.000) (0.000) (0.000) -

L.ln norm Pat Stock -10.20 -17.87 -16.91 -

(0.832) (0.658) (0.684) -

L.GHG Int. 0.197* -

(0.089) -

L2.GHG Int. 0.171 -

(0.135) -

L3.GHG Int. 0.131 -

(0.226) -

pre sample CCUS -0.485*** -0.483*** -0.470*** -

(0.002) (0.000) (0.000) -

pre sample CCUS dummy -0.297 -0.355** -0.437** -

(0.130) (0.047) (0.013) -

Year FE Yes Yes Yes

GICS FE Yes Yes Yes

Robust pval in parentheses - SE clustered firm-level

*** p<0.01, ** p<0.05, * p<0.1

Table 21: ZIP - Intensive Margin

2nd-step

Poisson regression

(1) (2) (3) (4)

CCUS pat count D1 LD1 LD2 d all

L.Cap Intensity -0.000374** -0.000340** -0.000317*** -

(0.020) (0.013) (0.008) -

L.ln Tot Assets 0.108 0.149* 0.142* -

(0.190) (0.068) (0.083) -

L.Rev growth 3y mean -2.229*** -2.498*** -2.707*** -

(0.001) (0.001) (0.000) -

L.Lab Productivity 0.000696** 0.000583*** 0.000541*** -

(0.011) (0.008) (0.006) -

L.ROA 3y mean -3.472** -3.154** -3.338** -

(0.039) (0.043) (0.025) -

L.Leverage -1.863** -2.524*** -2.535*** -

(0.032) (0.003) (0.002) -

L.R&D int -0.596 -4.447 -4.565 -

(0.915) (0.427) (0.415) -

L.Green dummy -0.383 -0.298 -0.390 -

(0.254) (0.301) (0.198) -

L.ln norm Pat Stock 136.6*** 147.0*** 159.8*** -

(0.004) (0.002) (0.001) -

D1.ln Scope1 0.195 -

(0.176) -

LD1.ln Scope1 0.0539 -

(0.562) -

LD2.ln Scope1 0.191** -

(0.018) -

pre sample CCUS 0.0739*** 0.0735*** 0.0734*** -

(0.000) (0.000) (0.000) -

pre sample CCUS dummy 1.322*** 1.197*** 1.152*** -

(0.000) (0.000) (0.000) -

Year FE Yes Yes Yes

Country FE Yes Yes Yes

Observations 2,877 2,755 2,630 -

Number of firm id 395 377 360 -

Robust pval in parentheses - SE clustered firm-level

*** p<0.01, ** p<0.05, * p<0.1

Note that estimates for column (4) are not available as the convergence for this spec-

ification was not achieved. This is a common phenomenon in non-linear models as the

Zero-inflated Poisson.

Third, we use a more standard count data model, i.e., the pseudo-maximum likelihood

Poisson regression (Silva et al., 2011[87] and Silva et al., 2006[88]) on the sample firms that

patent strictly defined CCUS patents. This estimator is robust to excessive zeroes (Martinez-

zarzoso, 2013[66]) and is adequate to deal with count-data dependent variables. Results in

Table 22 are consistent with the previous evidence from the intensive margin.
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Table 22: Poisson pseudo-maximum likelihood estimation

(1) (2) (3) (4)
CCS pat D1 D2 D3 D all

TAXCO2 yr 0.0442 0.0387 0.0364 0.0368
(0.401) (0.462) (0.493) (0.486)

RD SUB yr -0.287*** -0.177* -0.107 -0.108
(0.008) (0.062) (0.286) (0.279)

TRADESCH CO2 yr -0.173* -0.0484 0.00562 0.00717
(0.094) (0.578) (0.950) (0.935)

pre sample ccs 0.105*** 0.119*** 0.119*** 0.118***
(0.000) (0.000) (0.000) (0.000)

pre sample dummy ccs 1.262*** 1.095*** 1.219*** 1.218***
(0.000) (0.000) (0.000) (0.000)

green dummy yr 0.718 0.717 0.677 0.686
(0.173) (0.142) (0.177) (0.169)

cap empw yr -0.000247*** -0.000313*** -0.000327*** -0.000325***
(0.003) (0.000) (0.000) (0.000)

ln tot liab w yr 0.321*** 0.381*** 0.382*** 0.381***
(0.000) (0.000) (0.000) (0.000)

norm rd neww yr -1.502 -1.957 -2.432 -2.608
(0.435) (0.342) (0.258) (0.229)

rev g 3y meanw yr -2.293*** -2.341*** -2.442*** -2.467***
(0.000) (0.000) (0.000) (0.000)

prod lw yr 0.000525*** 0.000517*** 0.000543*** 0.000540***
(0.000) (0.000) (0.000) (0.000)

ln norm pat stock yr 199.6*** 197.6*** 206.3*** 208.1***
(0.000) (0.000) (0.000) (0.000)

roa 3y meanw yr -4.177*** -3.145*** -3.125*** -3.129***
(0.000) (0.000) (0.001) (0.001)

leveragew yr -2.257*** -2.580*** -2.582*** -2.555***
(0.000) (0.000) (0.000) (0.000)

ln scope1 new d yr1 0.215 -0.142
(0.122) (0.292)

ln scope1 new d yr2 0.0656 -0.0168
(0.330) (0.874)

ln scope1 new d yr3 0.132* 0.188**
(0.076) (0.039)

Observations 1,991 1,918 1,838 1,838
Year FE Yes Yes Yes Yes
GICS FE Yes Yes Yes Yes
Country FE Yes Yes Yes Yes
chi2 729.6 895.2 868.4 883.0

Robust pval in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Fourth, we use the zero-inflated negative binomial (ZINB) regression model instead of the

Zero-inflated Poisson to estimate the determinants of CCUS patenting. Since the estimation

process did not reach convergence neither when we use the three separate EPS sub-indices for

environmental policy nor when we use the principal component reduction - Policy-PCA, we

used the EPS OECD aggregate index as a proxy for the stance of environmental regulation.

Results in Table 23 and 24 confirm our previous evidence and the role of both lagged CO2

emissions and climate policy stringency.

Table 23: ZINB - Extensive margin

1st-step

Probit regression

(1) (2) (3) (4)

CCUS pat = 0 L1 L2 L3 L all

L.ln scope1 -0.190*** -0.228

(0.001) (0.182)

L2.ln scope1 -0.196*** 0.147

(0.001) (0.599)

L3.ln scope1 -0.192*** -0.120

(0.002) (0.447)

L.EPS -0.357* -0.364* -0.398* -0.390*

(0.059) (0.062) (0.063) (0.057)

L.Green Dummy -0.990*** -0.996*** -0.970*** -0.961***

(0.002) (0.001) (0.001) (0.001)

L.ln norm Pat Stock 51.52 64.97 59.75 55.53

(0.375) (0.268) (0.320) (0.335)

L.Rev growth 3y mean -1.655 -1.910 -1.788 -1.707

(0.170) (0.147) (0.208) (0.222)

L.Leverage 0.820 0.528 -0.116 -0.137

(0.462) (0.632) (0.920) (0.903)

L.ln Tot Assets 0.115 0.150 0.136 0.147

(0.342) (0.207) (0.244) (0.198)

L.Norm R&D 6.072* 5.365 5.502 5.250

(0.088) (0.138) (0.129) (0.133)

L.Cap Intensity 0.000271 0.000292 0.000295 0.000292

(0.118) (0.107) (0.179) (0.148)

L.Lab Productivity -8.75e-05 -0.000158 -0.000241 -0.000226

(0.840) (0.734) (0.683) (0.676)

L.ROA 3y mean 0.226 0.410 -0.0590 -0.336

(0.930) (0.870) (0.981) (0.899)

pre sample ccus -0.922*** -0.908*** -0.933*** -0.897***

(0.000) (0.000) (0.002) (0.002)

pre sample dummy ccus -0.245 -0.257 -0.348 -0.379

(0.371) (0.346) (0.237) (0.186)

Observations 2,764 2,647 2,526 2,526

Year FE Yes Yes Yes Yes

GICS FE Yes Yes Yes Yes

N clust 378 360 344 344

Robust pval in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Table 24: ZINB - Intensive Margin

2nd-step

Negative binomial regression

(1) (2) (3) (4)

CCUS pat D1 LD1 LD2 D all

D1.ln Scope1 0.124 0.190

(0.302) (0.425)

LD1.ln Scope1 0.108 -0.321

(0.239) (0.154)

LD2.ln Scope1 0.209** 0.299*

(0.017) (0.050)

L.Green Dummy 0.525 0.497 0.430 0.438

(0.113) (0.113) (0.176) (0.171)

L.ln norm Pat Stock 132.5** 140.9** 150.0*** 143.7***

(0.018) (0.013) (0.005) (0.009)

L.Rev growth 3y mean -2.043*** -2.037*** -2.029*** -1.984***

(0.003) (0.004) (0.004) (0.003)

L.Leverage -1.869* -2.100** -2.305** -2.372**

(0.079) (0.040) (0.022) (0.016)

L.ln Tot Assets 0.0908 0.106 0.103 0.105

(0.417) (0.317) (0.343) (0.321)

L.Norm R&D 0.0262 -1.507 -1.793 -1.560

(0.996) (0.800) (0.767) (0.792)

L.Lab Productivity 0.000451* 0.000419 0.000411 0.000413

(0.092) (0.106) (0.152) (0.134)

L.Cap Intensity -0.000196 -0.000187 -0.000190 -0.000195

(0.154) (0.169) (0.206) (0.188)

L.ROA 3y mean -1.774 -1.750 -2.350 -2.510

(0.407) (0.394) (0.248) (0.244)

pre sample ccus 0.123*** 0.121*** 0.120*** 0.119***

(0.002) (0.002) (0.002) (0.002)

pre sample dummy ccus 0.948** 0.950** 0.922* 0.901*

(0.027) (0.029) (0.050) (0.053)

Observations 2,764 2,647 2,526 2,526

Year FE Yes Yes Yes Yes

Country FE Yes Yes Yes Yes

N clust 378 360 344 344

Robust pval in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Fifth, to check if some of the control variable may drive the results, we have rerun

the regressions in Columns (1) of Table 7 (Extensive margin) and Column (1) of Table 8

(Intensive margin) dropping, gradually and then altogether, the significant control variables,

i.e., the 3-year MA of revenue growth, the green dummy, the patent stock and the leverage.

Comfortingly, both L.ln Scope1 and L.EPS keep their signs and significance as in the original
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tables. We also repeated the experiment with the specification that includes all three lagged

levels (and differences) of CO2 emissions (Column (4)). We found that the previous evidence

holds (we do not report the results for reasons of space, but they are available on request.

Sixth, in the ZIP regressions, we dropped the pre-sample mean and the pre-sample

dummy, and included the lagged CCUS patent variable to look for evidence of path de-

pendence. We found that (i) the lagged dependent variable has the expected positive sign

and is statistically significant, (ii) the CO2 emissions keep their signs and significance, con-

firming the previous evidence. Results are available on request.44

E.2 Impact of CCUS patents on market value and stock returns

- The timing of patent publication

As a general rule, in the major patent offices a period of 18 months is set before publishing

the application of a new patent. Nonetheless, there are many exceptions: for example,

following an explicit request by the applicant, the public disclosure of the application can

be anticipated; or, when the claimed priority date is antecedent to the application filing

date, the 18 month period is set to start from the prior rather than the latter, de facto

reducing the delay; similarly, divisional patents (i.e., patents adding relevant concepts to

prior applications having the same subject-matter to fulfill grant requisites) are publicly

disclosed right after application in the case the parent application is already public45. These

and other exceptions make the exact date of disclosure quite complex to identify, and the

specialized literature studying the phenomenon of early disclosure has found that the time

period can be smaller than full 18 months (see Baruffaldi & Simeth, 2020[7]), and, in any

case, not greater. In the body of this paper, all our specifications consider a lag of 1 year in

response that covers up to 12 of the 18 months for the delay in publication. As a robustness

check, however, we check for the possible distortion generated by a different timing when

the publication of patent applications is further delayed.

First, we present models considering a full two-year lag (2-year) in publication; hence,

assuming that all patent disclosed in year t were filed in year t-2 :

CCUS disclosedt = CCUS patt−2 Green disclosedt = Green patt−2 (16)

44We thank the Reviewers for suggesting these additional robustness checks.
45see for instance EPO publishing rules (https://www.epo.org/en/service-support/faq/searching-

patents/european-patent-register-and-federated-register/european-2) and AIPA USPTO rules
(https://www.uspto.gov/web/offices/pac/mpep/s1120.html).
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Second, we assume a uniform distribution of publications during the year (i.e., equal

probability to file a patent before and after June) and we decompose the total yearly ap-

plications between patents filed before June and after June every year (Mixed-lag). In this

setting, we consider the 18-months rule and we assume that patents filed before June in year

t are disclosed in the following year t+1 and the ones filed after June of year t are disclosed

in the second following year t+2 :

CCUS disclosedt =
CCUS patt−1 + CCUS patt−2

2
Green disclosedt =

Green patt−1 +Green patt−2

2
(17)

In this way we think we can better take into account the possible heterogeneous disclosure

bias. Following in table 25 we show results for the regressions on market-to-book value46.

The stocks of patents have been computed accordingly to the assumptions introduced above.

Comfortingly, the robustness analysis confirms our previous results.

46Note that in models (5)-(6) we lose some observations due to how the variable is constructed: no count
for green patents is available for year before 2010, hence the green patent stock is computed starting in 2011.
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Table 25: Market performance: Tobin’s Q

ln Q (1) (2) (3) (4) (5) (6) (7) (8)

Patent var 2-year 2-year 2-year 2-year Mixed-lag Mixed-lag Mixed-lag Mixed-lag

L2.CCUS/L.R&D stock 245.4 35.70 -3,051* -3,205**

(0.803) (0.921) (0.050) (0.041)

L2.Green/L.R&D stock -5.755 2.888 2.420 24.69

(0.279) (0.364) (0.409) (0.365)

L.ln Scope1#L2.CCUS/L.R&D stock 258.4* 271.5**

(0.052) (0.045)

L.ln Scope1#L2.Green/L.R&D stock -1.725

(0.418)

L.ln Scope1 -0.0761*** 0.0117 0.0112 0.0122 -0.0743*** 0.0158 0.0145 0.0159

(0.000) (0.578) (0.595) (0.563) (0.000) (0.457) (0.496) (0.456)

L.Policy pca 0.0843*** 0.0713*** 0.0726*** 0.0725*** 0.107*** 0.0962*** 0.0984*** 0.0988***

(0.002) (0.004) (0.004) (0.004) (0.001) (0.001) (0.001) (0.001)

L.CCUS/R&D stock mix -334.9 -256.3 -6,821** -7,303**

(0.827) (0.694) (0.034) (0.021)

L.Green/R&D stock mix -2.388 2.511 1.328 35.64

(0.647) (0.370) (0.607) (0.331)

L.ln Scope1#L.CCUS/R&D stock mix 546.9** 578.7**

(0.045) (0.030)

L.ln Scope1#L.Green/R&D stock mix -2.628

(0.349)

Firm-level controls Yes Yes Yes Yes Yes Yes Yes Yes

Observations 2,546 2,546 2,546 2,546 2,313 2,313 2,313 2,313

Firm FE No Yes Yes Yes No Yes Yes Yes

Year FE Yes Yes Yes Yes Yes Yes Yes Yes

GICS FE Yes Yes Yes Yes Yes Yes Yes Yes

Country FE Yes Yes Yes Yes Yes Yes Yes Yes

r2 a 0.672 0.256 0.257 0.263 0.256 0.215 0.216 0.216

Number of firm id 349 349 349 349 346 346 346 346

Robust pval in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Table 26 shows the same analysis applied to total returns. We find that, the results with

patents lagged for two years are not informative, but those with a 18-month delay structure,

in Columns (5)-(8), confirm our evidence.
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Table 26: Market performance: Total returns

Tot Ret (1) (2) (3) (4) (5) (6) (7) (8)

VARIABLES 2-year 2-year 2-year 2-year Mixed-lag Mixed-lag Mixed-lag Mixed-lag

L2.CCUS pat -0.498* 1.494 1.494 2.068

(0.057) (0.303) (0.329) (0.333)

L2.Green pat -0.00347 -0.00344 -0.00347 -0.00422

(0.595) (0.596) (0.937) (0.923)

L.ln Scope1#L2.CCUS pat -0.144 -0.144 -0.169

(0.163) (0.183) (0.199)

L.ln Scope1#L2.Green pat 1.62e-06 4.75e-05

(1.000) (0.987)

L.Policy pca#L2.CCUS pat -0.0929

(0.637)

L.Policy pca -5.645*** -5.673*** -5.673*** -5.535*** -5.607*** -5.764*** -5.763*** -5.669***

(0.007) (0.007) (0.007) (0.010) (0.007) (0.006) (0.006) (0.009)

L.ln Scope1 0.689 0.762 0.762 0.776 0.697 1.003 0.902 0.917

(0.579) (0.540) (0.557) (0.550) (0.574) (0.424) (0.487) (0.482)

L.CCUS pat mix -0.533* 6.304*** 6.568** 7.016**

(0.064) (0.008) (0.010) (0.022)

L.Green pat mix -0.00753 -0.00630 -0.0224 -0.0228

(0.394) (0.472) (0.667) (0.662)

L.ln Scope1#L.CCUS pat mix -0.514*** -0.533*** -0.552***

(0.004) (0.005) (0.008)

L.ln Scope1#L.Green pat mix 0.00115 0.00117

(0.745) (0.739)

L.Policy pca#L.CCUS pat mix -0.0708

(0.744)

Firm-level controls Yes Yes Yes Yes Yes Yes Yes Yes

Observations 2,223 2,223 2,223 2,223 2,223 2,223 2,223 2,223

Number of firm id 332 332 332 332 332 332 332 332

Firm FE Yes Yes Yes Yes Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes Yes Yes Yes

GICS FE Yes Yes Yes Yes Yes Yes Yes Yes

Year X GICS FE Yes Yes Yes Yes Yes Yes Yes Yes

r2 a 0.254 0.254 0.254 0.253 0.254 0.255 0.255 0.254

Robust pval in parentheses

*** p<0.01, ** p<0.05, * p<0.1

As a further robustness check, we estimate the Tobin’s q models lagging Green Pat/R&D

and R&D Stock/Fixed Asset two years instead of one to match the lag structure in the ZIP

analysis and to mitigate possible endogeneity concerns. Comfortingly, we find that the new

results (available on request) confirm previous evidence. We thank one Reviewer for this

suggestion.
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