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Abstract

Motivated by recent evidence of a carbon risk premium (Bolton and Kacperczyc, 2021),
we analyze firm-level patenting in Carbon Capture Utilization & Storage (CCUS) tech-
nologies and its impact on stock market performance from 2010 to 2022. Using zero-
inflated Poisson regressions on patent and financial data and COy emissions, we find
CCUS patents respond to COs emissions and climate policies. Moreover, although
CCUS patents are negatively (positively) related with market-to-book (stock returns),
we find that the effect turns if the firm is a high CO4 emitter and environmental reg-
ulation is tighter. Our findings suggest that CCUS innovation reduces the carbon risk
premium, benefiting firms with higher environmental risks.
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1 Introduction

Carbon capture (usage) & storage is an umbrella term bringing together a wide range of
different technologies, all contributing to a procedure that involves “the capture of COs,,
generally from large point sources like power generation or industrial facilities that use either
fossil fuels or biomass as fuel. If not being used on-site, the captured COgs is compressed
and transported by pipeline, ship, rail or truck to be used in a range of applications, or
injected into deep geological formations such as depleted oil and gas reservoirs or saline
aquifers.” (IEA, 2023)[1]. CCUS technologies have roots dating back to the 1920’s, when
methods were developed to separate CO, from sealable methane in natural gas reservoirs.
The concept of storing separated CO, underground was developed during 1950’s, driven
by the intuition that high-pressure COy could enhance oil recovery (hereafter EOR) from
reservoirs that had been only partially depleted by traditional extraction methods. Then,
recentlyﬂ with the introduction of new technologies - e.g. Direct Air Capture and Storage
(DACCS), Bio-Energy with Carbon Capture and Storage (BECCS) and long-term storage
-, CCUS innovation has started to be valued as a powerful tool to reduce CO, emissions
(Bui et al., 2018)[22] and, consequently, also subsidised by governmentﬁ. However, to date,
total capture capacity is still low, as the efficiency and scope of these new technologies are
low compared to the high sunk costs of projects, raising doubts about whether CCUS can

keep pace with expectations. In our technology overview, we highlight the peculiar nature

In the European Union, the first EU CCUS directive (2009/31/EC), establishing a legal framework for
storing COs was issued in 2009.

2In the US, 136 projects received 13.5 billion USD for the period 2011-2026. In 2020, the UK government
has allocated 1 billion £ with the Carbon Capture & Storage Infrastructure Fund (CIF) starting 2020
(Sovacool et al., 2024[89]). In the EU, projects are financed through the Innovation Fund, Horizon Europe
and Connecting Europe Facility - Energy (CEF-E).



of CCUS innovation and discuss its pros and cons with respect to environmental issues as
well as possible unintended consequences, such as bolstering the lock-in into carbon-intensive
industries.

This paper studies what drives firms to innovate in CCUS technologies and how capital
markets evaluate their efforts, using patents as a measure of innovation outputE| In figure ,
our data show that in the last 30 years, the patenting trend has been flat until 2000, slowly
increased until 2010 and then started to climb fast around 2015, when the first COP-21 made
everybody aware of the climate risk, engaging also the finance industry in the fight against

climate change (see Bolton and Kacperczyc, 2021)[14].
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Figure 1: CCUS patents filed and announced CCUS projects by year globally (source: own
data).

On the one hand, the acceleration in CCUS patenting may result from increasingly strin-
gent, environmental policies, which can provide incentives to innovate stronger than cost
reductions (Della Longa et al., 2021[32]). On the other hand, firms in highly profitable and

concentrated markets (such as the fossil fuel industry) that operate with stable and cost-

30ur study does not evaluate the environmental impact of CCUS project deployment. This still remains
a debated subject, sitting among the hot topics discussed at the COP28 in Dubai (November 2023).



effective technologies may have little incentive to shift to novel and riskier innovations, as
implied by Arrow’s replacement effect (Arrow, 1962[6]). In this trade-off, CCUS innovations
can be a unique opportunity for these firms to straddle the exploitation of their specific tech-
nological know-how and the pursue of a sustainable environmental transition. The pressure
from financial markets can therefore combine with regulatory constraints to provide firms
with powerful incentives to reduce their climate impact by innovating in environment-friendly
technologies, as long as investors evaluate that they can internalize their benefits (Hart &
Zingales, 2017)[50]. In fact, the intangible capital embedded in patents and projects that
enhance the firm’s social impact has been found to contribute to firm’s market value (see
Griliches, 1981[47] and Edmans, 2022]38|). CCUS innovations appear to join technological
and social (climate-related) aspects, thus motivating our interest in their determinants and
impact.

The empirical analysis uses a panel of worldwide firms tracked from 2010 to 2022. We
identified CCUS patents based on WIPO specific IPC/CPC classification codes and down-
loaded, from Orbis-IP database, all patents in the CCUS sub-classes and in the higher hierar-
chical class to which CCUS patents belong. Information on the identity of the patenting firm
then allowed us to match patent data with company financial data and CO4 emissions from
Orbis and Eikon-Refinitiv. Data on stock market returns, value and carbon emissions are
available only for publicly listed firms, and we use a panel of publicly listed companies with at
least a patent in CCUS or neighboring technologies to address two main research questions.
First, we estimate what drives firms’ decision to patent in CCUS (i.e., extensive margin) and
how much they do it (i.e., intensive margin), focusing on the role of direct carbon emissions

and environmental policy tightness. To measure the country regulatory pressure, we rely



on the Environmental Policy Stringency index (EPS) computed by the OECD (Botta et al.,
2014[18] and Kruse et al. 2022]59]), focusing on its sub-indices specifically related to decar-
bonization policies. EPS sub-indices can be viewed as credible demand-pull factors for firms’
green transition strategies, and are often found to accelerate eco-innovation (Hassan & Rous-
seliere, 2022[52]). To estimate firms’ patenting activity, we employ the zero-inflated Poisson
regression model, which conveniently deals with count patent data within a two-stage model,
assuming two different zero-generating processes (see Noailly & Smeets, 201574, Briggs &
Wade, 2014[19] for recent applications).

Second, we investigate the impact of firms’ CCUS patents on their market value and
stock returns, and whether the financial markets’ response to CCUS patenting changes with
their levels of CO, emissions and with tighter environmental regulationf] Empirically, we
depart from the typical approach estimating the market value of patents (see Gambardella,
2013[45]) to obtain the firm-level private return of intangible assets (see Bosworth & Rogers,
2001[17]; Tovainen et al., 2002[92]; Thoma, 2021[91]) in that we follow the literature that
models market value as a function of tangible and intangible (knowledge) assets, in our case
CCUS patents (see Griliches, 1981[47], Hall, 1999[48] for a review, and Colombelli et al.,
2020[30] for recent evidence). We extend this model by testing whether the effect of CCUS
patents on market value depends on CO4 emissions, i.e., on the firm’s carbon-transition risk.
We then turn to total stock returns, as recent evidence of a “carbon risk premium” requested
by investors to high-emitting firms (see Bolton and Kacperczyc, 2021[14] and Bauer et al.,

2022[8] among the others) is a plausible motivation to investigate if CCUS patent activity

4Arguably, this might suggest a strategic use of patenting in CCUS technologies to address changes of
climate policy and pressure from environmentally motivated investors (see for example Yu et al., 2017[99].



might mitigate this risk, as a reward to firms’ efforts to innovate in technologies that reduce
COs3 emissions. We thus differ from the finance literature investigating directly the presence
of a carbon risk premium in that we search what can reduce it. Hence, evidence of a negative
relationship of CCUS patents with expected stock returns would suggest that they reduce the
carbon risk premium requested by the financial markets to invest in the patenting companies.
Finally, because the stranded asset problem may particularly expose carbon-intensive firms
to the “climate transition risk” (Byrd & Cooperman, 2018)[23|, we also test whether the
mitigating effect of CCUS patents is stronger for companies with higher COy emissions.
Our findings may be summarized as follows. First, the decision of innovating in CCUS
technologies is likelier the “browner” is the firm (i.e., the higher the level of its CO4 emissions)
and the tighter is the environmental regulation, while increases in patenting intensity are
(weakly) related to “increases” in direct emissions. Second, patenting in CCUS technologies
seems to be acknowledged by the stock market, particularly if the firm is a high CO, emitter.
In fact, although CCUS patents appear negatively related to the firm’s market value, the
relationship turns positive when we account for the level of CO, emissions, suggesting that
stock markets positively evaluate the CCUS innovation activity of firms with a negative
environmental impact. Similarly, we find that CCUS patents are positively related with
expected stock returns, suggesting that investors require a higher risk premium, possibly
due to both the idiosyncratic climate-transition risk of firms engaging in CCUS technologies
and the uncertain returns of research activity in this field. However, the risk premium reduces
for firms with higher carbon emissions, showing that the stock market recognizes their effort
to mitigate not only their climate impact but also the negative effect of the climate-transition

risk on their profits. Based on our results, we can calculate quantitative effects from which



we derive policy implications.

We contribute to the literature in several ways. First, our study is the first one, to the best
of our knowledge, that analyses, at the firm-level, the determinants and the financial impact
of patenting in a technology like CCUS, which is deemed by UNECE (2021) as essential to
unlock the full potential of decarbonization and attain carbon neutrality. Second, we address
the debate on the carbon risk premium by studying what may reduce it, and find that high-
emitting firms may mitigate their climate-transition risk by innovating in CCUS technologies,
which are embedded in their genetic heritage, hence, to some extent, less difficult and costly
to deploy. Third, our finding that the direct market response to the innovation effort in
this field is not outright positive suggests that CCUS innovation is not (yet) viewed as other
green and high-tech innovations (see Doran & Ryan, 2012[36] and Colombelli et al., 2020[30]
for green inventions and Feyzrakhmanova & Gurdgiev, 2016[42], and Bruneo et al., 2023[20]
in pharmaceuticals and biotechnology). This is probably due to the climate-transition risk
associated with many of the patenting firms engaged in the fossil fuel industries and to the
uncertainty about the actual economic benefits. Fourth, our evidence nevertheless suggests
that acknowledgment by the capital markets may provide the more polluting firms with
economic incentives to eco-innovate that might be more effective, and less easy to elude,
than environmental policy norms.

The remainder of the paper is organized as follows. Section 2 presents an overview of
CCUS technologies. Section 3 presents the background literature for our study and derives
the research questions. Section 4 describes the construction of the dataset, the main variables
and the descriptive statistics. Section 5 presents the empirical strategies and results. Section

6 concludes. In the appendix, we present the IPC classification codes used to identify CCUS



technologies, additional descriptive statistics and the correlation matrices, the derivation of

the empirical models and the results of a battery of robustness checks.

2 A critical overview of CCUS technologies

CCUS patents are classified based on International and Cooperative Classification (IPC
/ CPC) codes. Mapping these codes to technological groups is a complex task that was
addressed by the specialized literature.ﬂ For our purposes, we adhere to the segmentation
outlined in the IPCC 2005 special report on Carbon Dioxide Capture and Storage|70], and to
the subsequent adaptations by UNECE[90] and the Directorate-General for Climate Action
of the European Commission[29).

This framework views CCUS as a four-step process: capture, transportation, storage
and utilisation. The capture phase involves several systems, depending on how COs is pro-
duced: post-combustion capture, pre-combustion capture, and oxy-fuel combustion capture
are examples of available technologies. These systems employ advanced gas separation tech-
nologies, as reflected in the IPC / CPC codes. Transporting captured CO; can be done via
pipelines, which, although costly, offer high capacity and long-distance capabilities. Water-
borne transport is used for large-scale movements of CO, and other liquefied gases, while rail
and road transport, though less common, are used for smaller capacities. Then, COs is either
utilized to produce economically valuable goods or long-term stored. Utilization of captured

COg can occur through mineralization, to incorporate CO, into concrete, chemical processes

®For an inventory of CCUS technology reserves, detailed technological insights, and specialized references,
see Kang et al., 2021[56] who, applying a dynamic programming algorithm combined with topic modeling
to patent data, identify twenty-seven key technology clusters and derive the main development paths for the
CCUS patent market.



to produce synthetic fuels or fertilizers,or biological methods like biochar sequestration to
enhance the quality of soil. The environmental impact of these uses differs, as mineraliza-
tion into cement offers greater potential in terms of scale and sequestration duration, while
chemical uses require smaller quantities and shorter sequestration time.

Finally, storage involves injecting high-pressure CO, into geological formations, such as
deep aquifers and oil deposits. Aquifers, i.e., porous rock formations containing salty water
beneath impermeable rock layers, can securely store CO, for long periods with minimal
leakage risk. Another option is EOR, where CO, is injected into oil wells to extract remaining
oil reserves. Although not universally adopted, EOR has been a common practice since the
1970s (Merchant, 2017[69]) among fossil fuel companies. This technique can be considered
beneficial to the environment provided that the quantity of injected (and stored) COq is
higher than the sum of the amounts of COy emitted during the extraction process and by
the extracted oil.

However, recent CCUS technologies show great potential towards combating climate
change. DACCS (Direct Air Carbon Capture and Storage), DOC (Marine, or Direct Ocean
Capture), BECCS (Bio-Energy Carbon Capture and Storage), and Microalgae-based carbon
sequestration represent carbon removal options that directly aim at sequestration of emis-
sions from the atmosphere, the seawater or through bio-masses. Although many challenges,
such as the need for further technological advancement and high operational costs, may still
delay the deployment and scale-up of these technologies (Al Yafice et al., 2024]3|), the main
difference between point-source and carbon removal technologies lies in the environmental
and economic implications their implementation has in the real world, particularly with re-

gard to their impact on the diffusion of renewables and the phase-out of carbon-intensive



assets.

Hence, not surprisingly, given the complexity and diversity of CCUS technologies, whether
they can be defined straightforwardly “green” is still an object of debate within the scientific
community. While point-source technologies like E.O.R. and carbon removal options like
DACCS and DOC are usually grouped under the CCUS umbrella, they differ significantly
in terms of technology maturity (see Kang et al. 2021]56]), infrastructure needs and policy
relevance. As long as these differences matter also beyond the standpoint of mitigation, the
motivations behind investing and innovating along different pathways, i.e., whether to aim for
genuine decarbonization objectives or to pursue asset-preserving strategies, are worth to be
studied speciﬁcallyﬂ Therefore, while CCUS may hold significant potential for contributing
to the green transition (UNECE, 2021[90]; Nath et al., 2024[72|) by enabling sector-specific
technological advancements in that direction, ensuring cost savings in meeting climate tar-
get{] (Budinis et al., 2018]21]), and as a component of a hydrogen production processﬂ, one
has also to consider its drawbacks to give an unbiased assessment. First, some forms CCUS
- especially when linked to E.O.R. or used by fossil fuel incumbents - may risk reinforcing
lock-in investments in fossil fuel-related infrastructure typical of carbon intensive technolog-
ical pathways, delaying energy transition and hindering progress of other green technologies
(Vergragt et al., 2011[93]; Faber et al., 2025[39]). Second, to maximize its effectiveness,

CCUS requires efficiency-enhancing innovation and substantial financial investments due to

5We thank one Reviewer for raising this point. Unfortunately, due to the technical difficulties that exist
in disentangling technologies still in their infancy like NET in terms of patent codes’ identification (see more
on this issue in the data section and, for detailed analyses, Kang et al. 2021[56] and Kang et al. 2022[55]),
to address this matter empirically is beyond the scope of our study.

"IPCC estimates a 138% increase in discounted transition costs (2015-2100) should CCUS be abandoned.
https://www.ipcc.ch/site/assets/uploads/2018/02/ipcc_wg3_ar5_summary-for-policymakers.pdf

8for example, see the UK CCUS-Enabled Hydrogen Production Report https://hydrogen-uk.org/
wp-content/uploads/2023/09/HUK-CCUS-Enabled-Hydrogen-Production.pdf


https://www.ipcc.ch/site/assets/uploads/2018/02/ipcc_wg3_ar5_summary-for-policymakers.pdf
https://hydrogen-uk.org/wp-content/uploads/2023/09/HUK-CCUS-Enabled-Hydrogen-Production.pdf
https://hydrogen-uk.org/wp-content/uploads/2023/09/HUK-CCUS-Enabled-Hydrogen-Production.pdf

the high costs of project development] Scaling projects to the hub level helps decrease
costs related to COy capture and raw material availability (for usage), and may thus make
CCUS economically feasible for applications in several sectors (e.g., cement, see Monteiro
et al., 2022[71]). Clearly, CCUS still faces various challenges, starting from a well-defined
regulating framework, incentives for infrastructure efficiency (e.g., project hubs, transporta-
tion facilities, storage sites, etc.) and cost barriers (Nath et al., 2024[72]). Balancing the
pros and cons of these issues implies serious policy and economic considerations beyond the
scope of this paper. However, to enforce the green transition, industrial and energy policy
should particularly promote “green” or net-negative emission CCUS technologies to mitigate
potential environmental externalities@].

Summarizing, our technology review has highlighted the controversial nature of CCUS
and the difficulty to enlist it, unquestionably, as an eco-innovation. However, to the extent
that the new generation of CCUS innovations are motivated by decarbonization policy and
that firms in carbon-intensive industries that patent in this field may ultimately reduce their

CO. emissions, in this paper we will treat it as (a peculiar type of) eco-innovation.

3 Related literature and research questions

The academic literature on CCUS technologies mainly covers techno-economic analyses,
case-studies for industrial plants and cross-sectional patent landscapes, whereas the research
questions of our study pertain to the field of economics. Thus, our conceptual framework

builds upon two streams of the economic literature - the study of eco-innovations and the

9See Wang et al., 2021(94] for a study on survival rate of CCUS projects.
10See Rosa et al., 2021[85] for a study on water-footprint of CCUS technologies.
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analysis of the impact of innovation (and in particular eco-innovations) on firms’ performance

in the financial markets.

3.1 Eco-innovations

Even though the definition of eco-innovation is not unique across the various studies, it is
often referred to as the subset of innovations with a specific focus on the reduction of the
adverse effects on the environment and a more efficient use of resources (Hojnik & Ruzzier,
2016)[54]. They typically include technological, product or process innovations as well as
social or institutional innovations. In general, their positioning straddles innovation and
environmental economics (Rennings, 2000)[84], leading to the well-known “double externality
problem”. Not only eco-innovations generate knowledge externalities in the stage of research
and development, but they also produce environmental externalities at the time of adoption
and diffusion. Hence, and also due to high risk and uncertainty, the private returns of R&D
are lower than the social returns, making firms reluctant to invest in this kind of innovations.
CCUS fits into this case, since private returns from its implementation are proportional both
to the stringency of environmental policies such as carbon pricing or emission trading schemes
(in the case of storage) and to the revenues generated from new products involving captured
CO; (in the case of usage). Nevertheless, initial sunk costs for CO5 capture are still too
high, and carbon pricing is too low to make projects profitable in many cases (Budinis et
al., 2018[21]), in spite of their potential environmental benefits. Hence, given the urgent
need of solutions to face the climate risk, dedicated policies have to encourage firms to

invest in eco-innovation. Indeed, a substantial literature has developed around the impact
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of environmental policy on eco-innovation. Yange et al. (2022)[98] use the number of green
patents over local population levels as a measure of urban eco-innovation to show the positive
effects of low-carbon city policies in China. Cainelli et al. (2020)[24] with a firm-level study
exploiting the Furopean Community Innovation Survey, find that the environmental policy
has positive impact on innovations targeted to the circular economy.

The literature on the determinants of eco-innovation is also rich and dense, though not on
CCUS. Many studies focus on the difference between traditional and green innovation, often
finding that typical drivers such as (general) R&D expenditure and human capital are more
effective in fostering traditional innovation than green one. Focusing on green innovation, the
presence of quality management systems (See Cuerva et al., 2014)[31], the access to public
funds and fiscal incentives (Cecere, Corrocher & Mancusi, 2020)[26], and public-private
collaborations (Scarpellini et al., 2012)[86] were found to be significant determinants, while
De Marchi (2012)[33] has shown that, within eco-innovation activities, cooperative R&D
substitutes traditional internal R&D. Finally, it has been suggested that the development of
eco-innovation is often sector-specific, and that its determinants are influenced by sectoral
features (Galliano & Nadel, 2015)[44] ['T] For example, Faria & Andersen (2017)[41] find that,
in the automotive industry, green innovations tend to converge at sector-level and increase
in intensity when they are complementary to existing innovations. These findings, though
related to other fields of innovation, are particularly useful in defining a theoretical framework
for studying CCUS technologies and their adaptability to environmental objectives to the
extent that they are complementary to some of the fundamental technologies used in the

core business of firms. Examples of such complementarity and adaptability is EOR for Oil

HSee also Del Rio et al., 2010(34]
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& Gas and CCS in the cement industry where the captured COs is used as inert additive
for concrete.

Eco-innovations are also studied for their impact on climate change and, specifically, on
the levels of COse emissions. The evidence is mixed. On the one hand, Puertas & Marti
(2019)[83] (with a country-level analysis using patents and R&D innovation) and Lee & Min
(2015)[60] (with a firm-level study focusing on green R&D) find that eco-innovations lead to
an overall significant reduction of COse emissions. On the other hand, Bolton, Kacperczyk
and Wiederman (2023)[16], in a recent comprehensive study on a worldwide sample of firms
tracked from 2005 to 2020do not find any significant effect of green innovation on direct and
indirect corporate CO, emissions of the innovating firms.

Ultimately, the literature has also focused on the pressure exercised by high CO4 emissions
on companies’ strategies, i.e., whether firms might be induced to invest in eco-innovation
to leverage their commitment with the markets and mitigate environmental issues related
to the carbon-transition risk of their activities. In this vein, Wang et al.(2020)]96], with
a country-level analysis, find that the climate-related pressure exerted by COs emissions
increases the probability of eco-innovation (particularly green-technologies in specific fields,
such as transportation), through the mediation of environmental regulation.

The above arguments and empirical findings pave the way for our first research question:

RQ la: What drives the decision to patent in CCUS technologies?

RQ 1b: What is the role of environmental pressure related to the climate risk?

We study these questions by investigating factors that affect heterogeneous firms’ decision

to patent in CCUS (extensive margin) and how much to innovate (intensive margin), i.e.,
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how many patents, conditional on a positive patenting decision. We are not studying what
triggers the decision to enter in the realm of CCUS technologies.

We approximate the environmental pressures with firm-level COy emissions and with
environmental regulation, as measured by country-level sub-indices of the Environmental
Policy Stringency Index (EPS)H. The former suggests that CCUS patent intensity might be
higher in companies in carbon-intensive sectors, which are more exposed to a stranded asset
problem (Byrd & Cooperman, 2018)[23]. = We are driven by the insights of the previous
literature, whereby demand factors related to climate risk concernmay drive the decision to
engage in eco-innovation, whereas considerations about cost saving, efficiency improvements
and firm capabilities more likely affect patent intensity (Kesidou & Demirel, 2012)[58].

To the extent that environmental pressure also equates to greater climate risk, affecting
the preferences of financial investors, also the public equity markets may end up requir-
ing higher returns - i.e., a carbon risk premium - to high-emitting companies (Bolton &

Kacperczyk, 2021)[14]. This is the issue we address in the following section.

3.2 Innovation and stock market performance

In general, patents are thought to bring value to the firm in that they assign exclusive
property rights on a certain invention for a limited period of time (see Griliches, 1981[47],
Bloom & van Reenen, 2002[11], Hall et al., 2005]49]). Their private returns have often been

estimated in terms of discounted patent rents (see Pakes et al., 1984[75] and, more recently,

12In particular, we employ the sub-indices relative to Carbon taxation, Emission Trading Schemes and
R&D public subsidies. If it were possible to examine the effect of these policies on point-source and net
emission technologies separately, one could expect that R&D public subsidies and other forms of governmental
incentives to technical advancements (should) significantly explain an increase in patents in the field of carbon
removal.
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Bessen, 2009[10]). This approach, however, estimates the market value of patents, rather
than whether patents contribute to firms’ market value. Therefore, to model the impact
of CCUS patents on the firms’ financial performance we refer to another branch of the
innovation literature (see Hall, 1999[48] for a review), which was set off by the seminal work
by Griliches (1981)[47], who ultimately finds that the market value of companies is positively
related to the value of their knowledge assets. Since then, this framework has been largely
adopted by studies investigating the impact of R&D investment and patents on firm market
value. Whether research efforts positively affect market value by reducing uncertainty about
the firm’s prospects (Nemlioglu & Mallick, 2020)[73] is an example of the recent directions
taken by this literature. Colombelli et al. (2020)[30] has adapted this framework to green
innovation, finding that green patenting positively affects firm’s market value as measured
by the market to book ratio. We follow their approach and describe the estimating model
in more detail in the empirical design section.

The impact of environment-related issues on firms’ stock market performance has also
been modeled in the framework of expected stock returns and their relationship with carbon
risk of green and brown companied”} As already discussed, the increasing engagement of
investors in climate-friendly issues (Bolton and Kacperczyk, 2023)[15] is expected to combine
with climate policies to incentivize risk-taker companies to overcome the competition asym-
metries implied by high-cost investments - thanks to a dynamic view of the economic cycle
that will eventually ensure a competitive advantage to companies active in environmental

innovation (see Porter & Van Der Linde, 1995[82] and Porter, 1991[81]). In a context of

13See Bauer et al., 2022[8], who study the relative equity pricing of more vs. less climate-friendly com-
panies; and Gorgen et al. 2020[46], who compare the stock returns of brown and green firms to construct a
carbon risk factor
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climate change where shareholders grow more socially responsible, maximization of share-
holder welfare - rather than wealth - becomes the objective of utility-maximizing investors,
laying the ground for environment-friendly investments (Hart & Zingales, 2017)[50].

In this paper, we refer to the concept of “carbon premium”, which Bolton & Kacper-
czyk (2021)[14] introduce and empirically find in a cross-section of US-stock returns, as the
higher premium requested by the equity market to invest in firms with a higher level of CO,
emissions. The literature that studies the relationship between intangible assets and stock
returns typically assumes that discounted future value of R&D might not be fully incorpo-
rated by investors due to its inherent riskiness and uncertainty. To the extent that R&D
intensity is associated with increased volatility (Chan, Lakonishok & Sougiannis, 2001)[27]
higher returns (i.e., a higher cost of of capital) will be required by the market, especially
when the firm is financially constrained (Li, 2011)[62].

When introducing patents or R&D expenditures in this framework, results generally
hold, as both patents and R&D intensity are found positively associated with higher and
more volatile returns (Mazzucato & Tancioni, 2008)[68]. In particular, Pastor & Veronesi
(2006)[78] argue that, during “technological revolutions”, novel technologies - such as rail-
roads in the 1800s and internet in the late 1990s - imply higher uncertainty about the
expected future productivity and profits of innovating firms, thus raising their discount rate
and their returns. This framework fits the current situation, as firms race to achieve the most
efficient green technology in order to face increasing environmental constraints in a context of
radical social and economic change (hence surrounded by systematic uncertainty). However,
the debate on this topic is still open. On the one hand, Andriosopoulos et al. (2022)[4], with

an event study on the announcement effect of new green patents made by the USPTO in US,
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have found that they have no significant impact on market value, also for companies active
in carbon-intensive sectors. On the other hand, Leippold & Yu (2023)[61], with a portfolio
simulation analysis, found that green patents have a negative impact on annual realized
returns, although their realized profits are found to be higher than expected in response to
market shocks which generate higher environmental pressure, confirming that green patents
confer greater protection against climate risk. We thus differ from this literature that in-
vestigates directly the presence of a carbon risk premium in that we estimate the whether
CCUS patent activity can reduce it.

In the end, the literature reveals that the uncertainty related to the market’s response to
eco-innovation comes from different, possibly opposite sources. On the one hand, higher risk
due to R&D and climate policy uncertainty (which raise the risk premium), on the other
hand, mitigation of the firm’s transition risk when the new technology is pro-environment
(which lowers the risk premium). This contrast, with an uncertain net effect, properly fits
the case of firms patenting in CCUS, as the financial markets signal their trust (or mistrust)
by requesting firms a lower (or a higher) premium. We contribute by providing empirical
evidence on which effect prevails.

The above literature motivates our second research question:

Research question 2: Do capital markets respond to CCUS patenting, and does the re-

sponse change with firms’ “browness”?
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4 Sample construction, Data, and Descriptive statis-
tics

4.1 Patent data

To construct the dataset we extracted CCUS patents from Orbis-IP (Intellectual Property),
the Bureau van Dijk’s platform dedicated to intellectual property data, using CCUS-specific
codes by the International and Cooperative Patent Classifications (IPC/CPC) selected by
WIPO M We identified CCUS patents based on the selection of codes available in the IPC
green inventory for carbon capture and storage patentsE] to which we added the CPC
codes in the YO2CE] and Y02PE] sub-classes for carbon capture, sequestration or disposal of
greenhouse gases, because these were missing in the IPC green inventoryEg]

Then, we retrieved patents also from the higher hierarchical IPC/CPC class so as to
enable the comparison between firms patenting in CCUS technologies and firms that have
not filed CCUS patents but still do research in a neighbouring technological area. We define

this set as CCUS-neighbouring technologies[”’] Appendix [A] reports the codes and brief

HWIPO classification comprises classes, sub-classes, groups and sub-groups. See Figure [2| In Appendix

15The IPC green inventory provide sub-group-level codes for CCUS technologies. See https://www.wipo.
int/classifications/ipc/green-inventory/home

®https://wuw.uspto.gov/web/patents/classification/cpc/html/cpc-Y02C.html

"https://www.uspto.gov/web/patents/classification/cpc/html/cpc—YO2P.html

18 As remarked in Section 2, distinguishing, and separately analyzing, newer carbon removal technolo-
gies (negative emission, or NET') based on patent codes classification appears, for the time being, still quite
complex. Kang et al. (2022)[55] note that NET development is still at the beginning, and propose a method-
ology to identify patents (and patent families) pertaining to these fields. So far, however, the identification
of these technologies has not yet been translated into a standard patent classification that we can use to
construct a database appropriate for our empirical analyses. Although the analysis of the determinants and
the implications of these technologies is of great interest, our empirical approach implies that we rely on a
patent classification that allows us to address our research questions within a firm-level approach.

YSpecifically, we add patents featuring at least one IPC/CPC code relative to the same sub-classes (level
3) that include CCUS technologies. By comprising these additional patents (and firms) in the dataset, in
the empirical analysis, we can contrast firms with CCUS patents and firms with similar scientific know-how
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descriptions of the groups that altogether define CCUS technologies (Table and of the
sub-classes used to identify neighbouring technologies (Table . As we downloaded patents
throughout the world, to ensure cross-country comparability we only included patents filed
within WIPO, EPO, USPTO, Japan and China national of‘ﬁceﬂ to avoid double counting
of patents filed both at a national and regional office. We focused on priority patent filings
to capture firms’ commitment to innovative activity (rather than its success)ﬂ Then, we
matched patent data with accounting and financial data for firms identified through Orbis
identification number.

To control for possible involvement of firms in other environmental innovation, we include

a “green” patents variable, downloaded from Orbis IP and identified as “green” based on

counting, we subtracted the number of CCUS green patents from the count of green patents
for each firm and year and, for reasons of computational capacity, we included the “green
patents” control only since year 2010. We then built a binary variable to denote firms that

filed at least one green (non-CCUS) patent in every year of the period 2010-2022.

that did not file CCUS patents, not only firm with higher and lower CCUS patenting activity. We thank
one Reviewer for suggesting this strategy.

20We have chosen to include patents filed by China, a major innovator in CCUS technologies, even though
the quality of their data has been sometimes argued by researchers in this area. Indeed, patent quality is not
the focus of our analysis, as much as it is the innovation effort strategy that patenting firms communicate
to the financial markets.

21 Priority year was used whenever available, and the filing year was employed when the latter was missing.

22This classification has been extensively used in the green innovation literature to identify environmental-
friendly technologies (see Fusillo, 2023[43] as an example).
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4.2 Firm data

Based on information about patent applicants, we identified firms that patented at least one
CCUS innovation (CCUS firms) and firms patenting in neighbouring technology during the
period 2000-2022, tracking them over time (in order to ultimately construct a firm panel
dataset). This time frame allows us to cover the potential evolution of firms’ patent strategy
in a period when the worldwide sensitivity to climate risks was rapidly growing, and at the
same time to exclude companies that had not been active in this field for quite a long period.
The panel data consists of publicly listed firms because the research questions addressed by
this study require stock market data (market value and total stock returns) and carbon
emission data, which are consistently collected from Eikon-Refinitiv only for quoted firms.

For each company, the number of patents was counted and summed by year. However,
some companies are affiliated or subsidiaries of a large corporation. To control for the
corporate strategy in the development of CCUS technologies (research and innovation paths,
production synergies and infra-group financing), we added up the patents of firms belonging
to the same corporate group or GUQO, i.e., Orbis IP’s “global ultimate owner” | while keeping
all other accounting and financial variables at the GUO (i.e. corporate) level (see Benassi
et al., 2021)[9]. For companies not affiliated to groups there is a one-to-one correspondence
between patent and accounting/financial data.

From Orbis database we retrieved the balance sheet data, the market-to-book ratio (as a
proxy of the Tobin’s q) and the information on the firm’s geographic location and industry
NAICS codes. From Eikon-Refinitiv database, we collected the annual total stock returns

and carbon emissions (Scope 1 COs emissions), which we use as a proxy of the external
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pressure on the firm to reduce its environmental impact.@ We then matched the firm data
in the Orbis and Eikon databases by using the company ISIN code.

Table [1] reports the average CCUS patent filings per GICS sector and the corresponding
average level of Scope 1 CO, emissions. The level of carbon emissions is higher in Utilities,
Energy, Materials while Energy, Consumer discretionary and Materials are the top patenting

sectors.

Table 1: CCUS Patents and CO5 Emissions per Firm-Year by GICS Code (own data)

GICS Code CCUS Patents (Mean) COs Emissions (Mean)
Energy 6.56 18,200,000
Materials 1.83 7,569,314
Industrials 1.23 369,616
Consumer Discretionary 2.69 614,135
Consumer Staples 0.07 1,104,146
Health Care 0.22 1,132,234
Information Technology 1.04 298,230
Communication Services 0.72 278,247
Utilities 0.77 29,200,000
N firms 259 259
Total 2.03 6,150,744

To further account for the external pressure to reduce the climate impact, we draw on
the Environmental Policy Stringency indez (Botta et al., 2014[18] and Kruse et al., 2022[59])
based on different policy indicators at the country level@ To address policy interventions
specifically related to decarbonization policies, we single out the following sub-indices: C'O,

Tax, COy ETS, Diesel tax, Low Carbon RED subsidies, Technology support policies.

230, emissions are classified as Scope 1 (direct emission from production), Scope 2 (indirect emission
from consuming purchased heat and electricity) and Scope 3 emissions (indirect emissions from logistics,
sale and disposal of sold products). Given the large number of missing values for Scope 2 and 3 emissions,
we use Scope 1 emission. Since also Scopel data report several (around 2%) missing values, we decided to
linearly interpolate the missing values in between non-missing years so as to maintain, as much as possible,
the integrity of the distributions over time.

24The index is calculated by the OECD and covers market- and non-market based policy instruments and
technology support policies (e.g., public R&D expenditure).
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The final dataset includes 408 firms, of which 259 patented at least one CCUS innovation
in the sample period. Total CCUS patents filed in the sample period amounts to 5,937.
The starting date of the panel data used in the econometric analyses is 2010 because the
information on green patenting is available only from 2010. Table [2[ and Table |3 report the
distribution by country of origin and by GICS sector of the publicly listed firms in the panel
data we use in the empirical analyses, highlighting CCUS firms i.e., those with at least one

CCUS patents.

Table 2: Firms distribution by (top 10) coun-

try
Table 3: Firms distribution by GICS sector
Country | Total | CCUS firms
Us 112 54 Sector Total | CCUS firms
P 106 100 Communication Services 2 2
DE 36 20 Consumer Discretionary | 41 28
GB 36 18 Consumer Staples 11 2
Energy 32 26
FR 33 16
Health Care 43 12
SE 14 5
Industrials 139 86
FI 11 7
Information Technology 5 4
1IE 8 6
Materials 109 85
NO 8 4
Utilities 25 14
CH 7 7
Firms 408 259
Other 37 22
Firms 408 259

As shown by Table 3] firms with at least one CCUS patent are quite distributed among
GICS sectors, although 48.3% of the companies operate in Energy, Utilities and Materials,

which include many carbon-intensive industries.
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4.3 Variables and descriptive statistics

In this section, we present the variables used in the analyses and the descriptive statisticsﬁ
We compute the descriptive statistics over the period 2010-2022 for the full estimation sam-
ple. Table [ describes the innovation and environmental variables, Table [5| presents the
firm-level economic and financial variables, Table [6] compares the innovation variables of
companies with high (above-median) and low (below-median) levels of carbon emissions. In
Appendix [B] we report the Correlation matrix and in Table the mean differences for
the sub-samples of firm with and without CCUS patents (i.e., those in the neighbouring
technology field as per IPC/CPC codes).

In Table [ the main variable we use to describe CCUS patenting is CCUS_pat, the firm-
year number of CCUS patents while CCUS_dummy is the binary variable denoting whether
the firm ¢ has filed 1 or more CCUS patents in year t. We also computed the stock of
patents (CCUS-Stock) , the R&D stock (RED_Stock) and the stock of (non-CCUS) green
patents (Green_stock), assuming an annual growth rate of knowledge capital of 8% and a
depreciation rate of 15%, in line with relevant literature (e.g., Colombelli et al., 2020[30]).

To estimate the firm market value model, the innovation variables are normalized by
fixed assets (RED_stock/Fiz. Assets) or R&D expenditure (CCUS and green total patents
respectively CCUS/R&D_stock, Green/R€D_Stock). The patent stock, available on Orbis
platform, is normalized by total assets to account for size distortions, and transformed in log-
arithms (In_norm_Pat_Stock). Similarly, R&D is divided by total assets (R&D_int), whereas

carbon emissions were transformed into logarithms.

25 All variables are winsorized at 1% and 99% levels, as a standard practice to reduce the effect of possible
outliers in the data derived by Orbis.
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Table 4: Innovation variables and carbon emissions

Variable N Mean SD p50 p90 P99
CCUS_pat 3,153 1.535 7.674 0 3 24
CCUS_dummy 3,153 .2533 4361 0 1 1
CCUS_Stock 3,153 8.786 40.64 0 19.52 134.14
CCUS/R&D_Stock 3,137 5.53e-06  .0000239 0 .0000104 .000108
Green_pat 3,153 182.47 391.3 48 486 1715
Green_dummy 3,153 .8233 3814 1 1 1
Green _stock 2,897 1,108.83  2,324.38 301.95 2,996.38  9,946.19
Green/R&D_Stock 2,885 .00078 .003058  .0001699 .0016368 .008916
In_norm Pat_Stock 3,153 .0009371 .001405  .000483  .002271  .007407
R&D_int 3,153 .0294 .03999 .01899 .06761 .1766
R&D stock/Fix. Assets | 2,031 .9547 1.9186 4736 2.2466 8.4629
In_Scopel 3,153 13.0460  2.6885 12.8479  16.8162  18.6918
In_Scope2 3.044 12.712 1.918 12.852 15.084 16.249
In_Scope3 2,223 14.261 3.341 14.72 18.64 20.17
Policy PCA 3,153 1.557 1.055 1.482 3.052 3.640
"TAXCO2 3,153 1.340 1.939 1 6 6
_RD_SUB 3,153 3.768 1.421 3 6 6
TRADESCH_CO2 3,153 1.203 .9993 1 3 3
Sample All firms

Table [5| describes the firm-level variables. To measure firm size we use the (log of)
total assets (In_Tot_Assets). The yearly growth of revenues (Rev_growth) is included to
capture the short-term firm growth while the market-to-book ratio (7Tobins@) accounts for
growth and profitability prospects as valued by the equity market. The return on asset

(ROA) - the ratio between net income over total assets - measures accounting profitabil-
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ity. In order reduce the noise over the long panel period, we use the three-year mov-
ing average of ROA (ROA_3y_MA). We apply the same transformation to revenue growth
(Rev_growth_rate_8y_MA). To capture the volatility of profitability, we calculated the three-
year moving standard deviation of ROA (ROA_3y_sd). Leverage, the ratio of long term
debt to total liability, accounts for firm indebtedness and financial structure. Finally, capi-
tal intensity, a proxy for asset tangibility (Cap_Intensity) is the ratio of total assets to the
number of employees and labour productivity (Lab_Productivity) is revenues by employee.
Finally, the annual total returns (Zot-Ret) are sourced from the Eikon Refinitiv platform
and Tot_Ret_sd is the three-year standard deviation of returns that we use as a proxy of firm

risk.

Table 5: Firm-level control variables

Variable ‘ N Mean SD p50 p90 p99
ROA 3y MA 3,140 .0446 .0505 0427 1021 1916
Cap_Intensity 3,153 1065.18 1752.07 584.89 2198.87 10315.69
In_Tot_Assets 3,153 16.576  1.27 16.63  18.36 18.36

Leverage 3,153 1917 .1230 1781 L3399 .5847

Rev_growth_rate_3y_MA | 3,121 .0347 .1696 0228 1341 ATTT
Rev_growth_rate 2,972 .0487 448 01072 .2081 7912
Lab_Productivity 3,142 589.78  588.46  394.83 1062.88 3180.383

ROA 3y _sd 3,118 .0187 .0266 011 .0403 120
TobinsQ 2,982 .999 .992 701 2.019 5.255
Tot_Ret 2,868 12.08 35.852  9.13 53.016  124.66

Tot_Ret_sd 2,611 29.54 23.345  24.233 52.657  121.90
Sample All firms

Finally, in Table @, we test whether the CCUS patent intensity of firms with high (above
the median) and low (below median) scopel carbon emissions significantly differs, and we
find that firms with a higher climate impact are significantly more active in CCUS and green

patenting.
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Table 6: Mean differences between high- and low-carbon emitting firms (T-tests)

CCUS firms ‘ Habove — Hbelow  MHabove Hbelow tstat N

CCUS_pat 1.77 2.43 0.66 6.54%** 3,153
Green_pat 162.24 264.95 102.71 11.89*%%F 3153
R&D_int -0.0202 0.019 0.039 -14.61*** 3,153

t statistics in parentheses
*p < 0.05, ¥ p < 0.01, *** p < 0.001

5 Empirical strategy and results

5.1 Determinants of CCUS innovation
5.1.1 Empirical strategy

When we ask what determines the intensity of patenting, we implicitly exclude firms that,
having a technological and scientific know-how that neighbors that of CCUS do not file a
patent in the specific CCUS field. This approach might generate a sample-selection bias
where the factors driving the patenting decision - for example unobservable specialization
costs - may also affect the intensity of their research effort but are not accounted for. There-
fore, our dataset includes companies that innovate in the broader CPC/IPC technological
field (i.e., the higher hierarchical class) that contains the CCUS group of patents as a sub-
set. Precisely, we add firms that filed patents featuring at least one IPC/CPC code relative
to the same sub-classes (level 3) that include CCUS technologies, as shown in Figure [2| in
Appendix [A]

Our assumption on the innovating behavior is that every year companies face two se-
quential decisions: 1) whether or not to file a CCUS patent (extensive innovation margin);
2) how much to invest in CCUS innovation, i.e., how many patents to file, conditional on

the positive patenting decision (intensive margin). To address this problem empirically,
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we use the Zero-inflated Poisson (ZIP) regression model (see Noailly & Smeets, 2015)[74],
which conveniently combines the process that governs the realization of the binary outcome
(patents vs. non-patent) with the process explaining the realization of the number of patents
filed conditional on patenting. The ZIP model is based on the assumption that a zero patent
outcome is the realization of two different processes. The “structural” zeroes are realized
when the firm decides not to file a patent in a given year (say because the expected profits
from innovation minus the costs of patent application do not exceed the innovation invest-
ment), and are modeled by a probit regression. The “standard” zeroes occur when the firm
does not file a patent in that year due to some exogenous factors (e.g., the innovation has
not yet reached the required TRL - technology readiness level, or the R&D efforts were
unsuccessful), and are modeled by a Poisson regression.m Since the dataset includes both
CCUS patenting firms and firms patenting in neighboring technologies, we assume that all
sampled firms can decide, every given year, whether to file for a patent (we use the priority
year to capture the year of filing decision) and we can discriminate between firms deciding
not to patent in a given year and firms that failed to do so.

To model CCUS patenting behavior and capture cross-firm heterogeneity, we rely on a
large set of firm-level variables such as size, profitability (ROA) and its variability, revenue
growth, financial leverage and capital intensity. The patent stock and the normalized R&D

expenditure account for the firm’s innovation capacity. Moreover, in line with the literature

26The zero-inflated Poisson model resembles the Heckman selection model but has less restrictive normal-
ity assumptions, does not require an exclusion restriction in the second step and can deal with count data
(without logarithmic transformations) that better fit our firm-level patent data. Moreover, the zero-inflated
model does not censor observations in the second step but, assuming two latent groups (an Always-0 Group
and a Not Always-0 Group), it proceed in three steps: it models membership in the latent groups, then it
models counts for those in the Not-Always 0 group, and ultimately it computes observed probabilities as a
mixture of the probabilities of the two groups (Long & Freese, 2014[64]). See Appendix C for a derivation
of the model.
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on eco-innovation, we include labor productivity as a proxy of human capital, and a dummy
denoting that the firm has also green patents (other than CCUS patents), to control for
past activity and experience in the green knowledge sector. We lag all variables one year to
reduce concerns about reverse causality.

As CCUS patents appear specifically intertwined to climate risk problems related to CO,
emissions and to the bad reputation of high polluting firms, two natural drivers of CCUS
innovation are Scopel CO, emissions (lagged one, two, and three years)m and environmental
regulation. In the first step, when estimating the extensive margin (i.e., membership in the
latent groups), we include lags of COs emissions in levels because the patenting decision
is more likely driven by the magnitude and continuity of the environmental riskiness of
the firm. To proxy for the country-level regulatory policy, we add three sub-indices of the
Environmental stringency index (OECD) specifically addressing carbon emission issues, such
as COy tax, Emission Trading Schemes and Low carbon RED subsidies, which are likely to
motivate CCUS innovation. In the second step, when estimating patent intensity (intensive
margin), we enter the three lags of CO, emissions as first-differences to capture the shot-term
incentives that may drive the intensity of the patenting process.

Because the cumulated knowledge stock cannot be considered strictly exogenous, we rely
on the pre-sample mean estimator by Blundell (1995)[13], which accounts for firm fixed effects

by the pre-sample mean of the dependent variable@ Therefore, we add the mean of CCUS

2TWe lag carbon emissions not only to address reverse causality concerns, but also to account for the fact
that research activity needs time to reach the results that allow firms to file a patent. We stop at t-3 to
avoid losing too many observations. Moreover, in our last specification, we test the joint significance of the
three lags to investigate the dynamics of the process, controlling for the full trend of CO5 emissions.

28 As highlighted by Blundell et al. (2002)[13], in count data models with individual specific constants,
the Poisson maximum likelihood estimator is inconsistent for the parameters of interest if the regressors are
predetermined, hence not strictly exogenous.
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patenting in the period 2000-2011 as a proxy of the time-invariant cross-firm heterogeneity
in innovation capacity, and a binary variable denoting if the firm has patented in the pre-
sample period (see also, for recent applications, Noailly & Smeets, 2015[74] and Majo & van
Soest, 2011[65]).

As a robustness check, we estimate the same specifications using the Zero-Inflated Neg-
ative Binomial model (ZINB). Furthermore, we estimate the intensity of patenting using a
standard Poisson count data model using the sub-sample of firms that have filed at least one

CCUS patent in the period. The results are in Appendix [E.1]

5.1.2 Results

In Tables[7land[§], we report the results of the ZIP regressions augmented with the pre-sample
mean estimator. Recall that in the ZIP model, the extensive margin in Table 7] estimates the
probability that firm ¢ files a CCUS patent in year ¢, while the ”intensive” margin in Table

estimates how many patent firm 1 files in year ¢ conditional on the patenting decision@

29Note that in the extensive margin the standard ZIP model predicts the probability to have a zero
outcome (i.e., probability not to patent). For the readers’ convenience, we inverted the signs of the coefficients
in Table [7]
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Table 7: ZIP - Extensive margin

1st-step
Probit regression

Table 8:

ZIP - Intensive Margin

0 @ ® @
CCUS_pat=1 t-1 t-2 t-3 L_all 2nd-step
Poisson regression
In_Scopel,_, 0.146%%+ 0.148 B @) 3) )
(0.001) (0.255) CCUS_pat_count D1 D1, D, o D_all
In_Scopel;_» 0.141%%% -0.0672
(0.002) (0.722) D.In_Scopel 0.199 -0.0294
In_Scopel,_s 0.139%%  0.0665 (0.165) (0.882)
(0.003) (0.554) D.In_Scopel;_; 0.0641 -0.194
TRADESCH_CO2;_, -0.156** -0.140% -0.166%*  -0.167** (0.489) (0.292)
0.030)  (0.051)  (0.022)  (0.021) D.In_Scopel, s 0.201%* 0.318%%*
_TAXCO2;_, 0.0665* 0.0567 0.0748* 0.0763* (0.012) (0.005)
0,095  (0.163)  (0.068)  (0.062) Green_dummy,_ 0.375 0.292 0.385 -0.383
RDSUB,_, 20.0538  -0.048  -0.0491  -0.0515 (0.269) (0.312) (0.204) (0.198)
(0.306) (0.335) (0.339) (0.321) In_norm_Pat_Stock,_, 136.1%%* 146.9%*+* 160.1%** 160.7+%*
Green_dummy,_; LISOREE  1LISTH  1166%F%  1.158%%* (0.005) (0.002) (0.001) (0.001)
(0.000) (0.000) (0.000) (0.000) Rev_growth_rate 3y MA,_;  -2.261%** -2.555%* -2.782%* S2.T74%FK
In_norm_Pat_Stock,_ 6908 -1693  -17.80  -13.02 (0.000) (0.001) (0.000) (0.000)
0.904)  (0.674)  (0.664)  (0.754) Leverage, 1 J1830%F  2400%FF  Q50IFRE D.496%F*
Rev_growthrate 3y MA,_;  L5I7%  1.700%%  2006**  1.937%* (0.034) (0.003) (0.003) (0.003)
0.037)  (0.035)  (0.020)  (0.025) In_Tot_Assets,_; 0.108 0.149% 0.142* 0.143*
Leverage,_; SLLTTERRE 11.394%%F -1.213* -1.217* (0.196) (0.070) (0.085) (0.082)
0.005)  (0.035)  (0.075)  (0.075) R&D.int,_; 0.612 4.442 4583 4.876
In_Tot_Assets,_; 00841 0106 -0.0900  -0.0975 (0.914) (0.429) (0.415) (0.382)
0.260)  (0.171)  (0.259)  (0.224) Cap_Intensity,_; ~0.000373%% -0.000340%* -0.000319%**  -0.000322%+*
R&D_int,_; 5.208% 4307 4379 -4.037 (0.020) (0.013) (0.007) (0.007)
0.054)  (0.137)  (0.137)  (0.164) Lab_Productivity,_; 0.000694*%  0.000584%%*  0.000546*%*  0.000543***
Cap_Intensity,_; 20.000141 -0.000152 -0.000141 -0.000145 (0.013) (0.008) (0.005) (0.006)
(0271)  (0.158)  (0.190)  (0.172) ROA 3y MA,_, S34T0%F 3.125%* -3.205%* -3.260%*
Lab_Productivity;—, -4.59e-06  5.81e-05  8.34e-05  8.45e-05 (0.041) (0.045) (0.027) (0.030)
(0.983)  (0.749)  (0.645)  (0.645)
ROA 3y _MA; -0.173 -0.265 -0.589 -0.602 pre_sample_ccus 0.0738%%* 0.0734%%* 0.0733%** 0.0732%%*
(0.891)  (0.844)  (0.670)  (0.663) (0.000) (0.000) (0.000) (0.000)
pre_sample_ccus_dummy 1.309%** 1.183%+* 1.140%** 1.138%**
pre_sample_ccus 0.471F%  0.ATT**F 0.468%F*  0.462%+* (0.000) (0.000) (0.000) (0.000)
(0.012)  (0.000)  (0.000)  (0.000)
pre_sample_ccus_dummy 0.306 0.356%* 0.433%* 0.437%* HO: D1 LD1LD2=0 8.85%*
(0.132) (0.043) (0.013) (0.013) Observations 2,877 2,755 2,630 2,630
Year FE Yes Yes Yes Yes
HO: t-1t-2t-3 =0 10.43%** Country FE Yes Yes Yes Yes
Observations 2,877 2,755 2,630 2,630 N_clust 395 377 360 360
Year FE Yes Yes Yes Yes Robust pval in parentheses
GICS FE Yes Yes Yes Yes ¥ p<0.01, ¥ p<0.05, * p<0.1
N_clust 395 377 360 360

Robust pval in parentheses
*Hk p<0.01, ¥* p<0.05, * p<0.1

Starting from the extensive margin, we find that the amount of (log) emissions (In_Scope1; 1)
is a significant (and positive) predictor of the decision to innovate in the CCUS sector. The
evidence holds when we test, separately, three lags of the variable, to account for a delay in
the patenting response. When we include all three lags in Column (4), we find no significant
evidence, but the F-test at the bottom of the table tells us that the three coefficients are
jointly significant. To confirm the relevance of environmental pressure in the extensive mar-
gin, we find that the decision to patent is positively related to carbon pricing (_TAXCOZ2;_)
and negatively related to the tightness of Emission Trading Schemes (. TRADESCH_CO2;_4).
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Although this latter result seems counterintuitive, we must consider that ETS schemes do
not provide, to date, for direct remuneration of negative emissions, thereby reducing the in-
centives to invest in these technologie’’} Finally, we find that the coefficient on Low Carbon
R&D subsidies (_LRD_SUB;_1) is insignificant.

Results in Table [7] also show that having previously filed patents in green technologies
(Green_dummy) positively affects the probability of filing CCUS patents, while the coefficient
on the generic patent stock is insignificant. These results suggests the decision to innovate
in CCUS is driven by the urgency to address a “dirty” environmental profile as well as
by firm-specific innovation capacity and experience in green technologies. Turning to the
other control variables, we find that the probability of CCUS patenting is higher for high-
growth firms (Rev_growth_rate_3y_-MA;_1), less levered (Leverage;—,) and smaller companies
(In_Tot_Assets,_1). Perhaps surprisingly, R&D intensity (RéD_int,_1) is negatively related
to the decision to innovate in CCUS (but the coefficient is significant only once). The finding
of insignificant, ambiguous - even negative - relationships between general R&D expenditure
and eco-innovation has already been addressed by the literature. For example, it has been
argued that technological capability is only one of the drivers of eco-innovation, and that
the higher complexity of the other determinants may dilute its relationship with cyclical
R&D expenditures’’] Furthermore, as suggested by (Wang & Hagedoorn, 2014)[95] this

result may also depend on the delayed effect of research investment and the readiness of

30ETS policies are diversified across countries; for instance, from 2018, the US tax credit
has been ruled by the 45Q scheme for Carbon Sequestration https://www.iea.org/policies/
4986-section-45q-credit-for-carbon-oxide-sequestration that provides compensations between $50
and $85 dollars per ton of sequestrated industrial emissions in the form of tax credits (hence incentiviz-
ing mostly high-revenue firms, https://www.mckinsey.com/industries/oil-and-gas/our-insights/
scaling-the-ccus-industry-to-achieve-net-zero-emissions. Conversely, the EU ETS does not com-
pensate negative emissions at all yet.

31See Diaz-Garcia et al., 2015[35| for review and discussion of past results.
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innovation to become a patent. Finally, the probability to file CCUS innovations seems to
increase if the firm has previously patented in the same field (pre_sample_CCUS_dummy)
and the greater the patenting intensity in the pre-sample period (pre_sample_.CCUS). This is
indicative of a “specialization effect”, in line with well-established evidence that technological
innovation is a path-dependent activity (in the evolutionary economics tradition, see the
seminal contributions of Patel & Pavitt, 1997[79] and Dosi & Nelson, 2010[37]; more recently,
with reference to green innovation, see also Aghion et al., 2019)|2].

In Table [8, the dependent variable is the number of CCUS patents filed by the firm in
a year. When we look at the relationship between patent filings and the growth in carbon
emissions (D.ln_Scopel), we find that only the coefficient in Columns (3) is statistically
significant, suggesting a medium-term incentive to file more patents is in place (i.e., between
t-2 and t-3) when the company is active in CCUS technology. The evidence holds in Column
(4), where we test the joint significance of the three lagged differences, as shown at the
bottom of the table. Interestingly, green patenting is negatively signed (though insignificant),
potentially indicating a substitution effect when firms have to allocate specific R&D resources
to different, and costly, projects. In contrast with the extensive margin, now patent stock
(In_norm_Pat_Stock;_1) enters with a positive sign suggesting that patent intensity eventually
depends on the experience and continuity of the firm’s innovative effort in general while the
positive and significant coefficients on the pre-sample mean and dummy show that sector-
specific technological specialization is also crucial.

Turning to the other control variables, we find that larger companies (In_Tot-Assets;_1)
that grow less (Rev_growth_rate_8y_MA;_1) appear to file more CCUS patents. Moreover, the

intensity of CCUS patenting is positively associated to labor productivity (Lab_Productivity, 1)
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and negatively related to profitability (ROA_3y-MA;_,). Finally, we find that patent inten-
sity is higher in less levered (i.e., more capitalized) companies, suggesting that these firms
have to rely more on the equity market, not only because they are innovative, hence riskier,
but also due to their double externality problem. The different pattern of results between
intensive and extensive margins supports our choice to design our research question as a
two-step process. Hence, if the choice to innovate appears to be mainly driven by environ-
mental, policy, and technological factors, patent intensity is eventually constrained by cost
efficiency and financial constraints related to a double externality problem.

To summarize, our empirical analysis shows that firms patenting in CCUS technolo-
gies have technological know-how and experience in the field of eco-innovation and, more
importantly, that they respond both to environmental policies and to their sector-specific
climate risk, as shown by results on COy emissions. Our findings suggest that CCUS can
be assimilated to other eco-innovations, as also implied by the evidence that the decision
to patent and the intensity of patent activity are explained by different drivers (Kesidou et
al., 2012)[58]. These results hold to an array of robustness tests. First, due to high persis-
tence of carbon emissions, we used emission intensity (computed as the ratio of emissions
to sales) instead of the log of the total amount. Second, because the different structure of
the lagged emissions implies that we estimate our models on (slightly) different samples, we
estimate all regressions with the most restricted sample (i.e., t-3) in Column (4), N=1526.
Third, we re-estimate the intensive margin regressions using the Pseudo Poisson Maximum

Likelihood (PPML) estimator’] as an alternative to the ZIP model. Fourth, we estimate

32See Silva et al., 2006[88] and 2011[87]
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all regressions with zero-inflated negative binomial regressions’] Results of the robustness

tests in Appendix confirm the evidence above.

5.2 CCUS patenting and stock market performance

Our second research question addresses the impact of firm’s CCUS patent intensity on their
performance in the stock market. The underlying issue is whether financial markets are
willing (or capable) to acknowledge and reward these technologies, thereby embracing a
wider range of objectives from shareholder value to shareholder welfare (Hart and Zingales,
2017)[50], from investors and governments’ climate concerns, as tighter environmental poli-
cies may jeopardize firms’ profitability. This would provide a significant incentive to innovate
in CCUS technologies in addition to environmental policies. To this purpose, we estimate,
first, the relationship between CCUS patents and firm value and then their relationship with
total stock returns. As our data includes not only firms with a CCUS patenting activity,
but also those with patents in a neighboring research area (see Section {4 and Appendix ,
our analysis contrasts both companies with more or less CCUS patents and firms with and

without CCUS patents.

5.2.1 CCUS patenting and firm value

Our empirical model draws on a recent contribution by Colombelli et al. (2020)[30], who
estimate the impact of the generation of environmental (green) technologies inventions (prox-
ied by patents) on firm market value for a panel of European countries, and find that firm

market value is positively related to green patents. Following Griliches (1981)[47], Hall

33We thank one referee for suggesting us to perform this analysis.
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(1999)[48] and Hall et al. (2005)[49], we also model the firm’s market value as a function of

a combination between tangible and intangible assets, as in equation (1):

Vie = be(Air + vKi)? (1)

where Vj; is the market value of firm 7 at time ¢, A;; is the value of tangible assets, K
denotes the firm’s knowledge, i.e., intangible assets, and the parameter o allows for non-
constant returns to scale. Approximating intangible assets by the number of (CCUS and
Green) patent stocks and by the R&D stock, and lagging one year to control for potential
reverse causality, our baseline specification becomes (see Appendix @ for the derivation of

the estimating model):

R& D _stock;; 1 CCUS _stock;;—q Green_stock;_q
+72 +73
Ait—l R&D,StOCkit,1 R&D,StOCkit,1

+BControls;_1+¢€;

(2)

Where logQ;;—1 is the logarithm of the Tobin’s Q, the R&D to tangible assets ratio captures

log Qi = log bi+m

CCS_stock;;—1

the firm’s commitment to generate new knowledge, RCD stock. 1

measures the actual patent-

Green_stock;t—1
R&D _stock;t—1

ing yield of the specific CCUS technology, i.e., our variable of interest, and is its
counterpart with green (non-CCUS) technologies, that we enter as a control Variable.ﬁ € 18
the random stochastic error with zero mean. Both are lagged one year to account for a delay

in the response of average stock returnﬂ. We then add the one-year lag of scope 1 COy emis-

34To build the R&D, CCUS and green patent stocks, we used the perpetual inventory method, assuming
a depreciation rate of 15% (see also Hall, 1999[48]).

35Notably, in our robustness analysis we address the possibility that a distortion may arise when the lag
between the actual application and the disclosure of the news to the public is longer than one year, e.g.,
18 or 24 months. Since we have no access to information about the disclosure date of each patent, to deal
with this potential time inconsistency we re-estimate our models by applying both (i) a two-year lag to all
patent variables (ii) a mix between the one and two-year lag to accommodate a (more plausible) 18 month

35



sions and its interaction with CCUS patent intensity to investigate not only how the stock
market responds to CCUS (and green) patenting, but also whether it responds differently to
patents filed by companies with higher levels of carbon emissions, i.e., higher climate risk.
Indeed, climate concerns may irk not only the sensitivity of environment-friendly investors
but also of profit-motivated shareholders who dread the backlash of a costly conversion of
the production process.

We add a large set of control variables that includes firm size, financial leverage, account-
ing profitability (3-year average and standard deviation), revenue growth, labour productiv-
ity, and capital intensity. To control for external regulatory pressure, we use 5 sub-indices
of the OECD Environmental Policy Stringency (EPS) specifically related to carbon emis-
sion problemsﬁ. For conciseness, we insert a data reduction of these indices obtained with
Principal Component Analysis, named Polz’cy-PCAﬂ This variable, being influenced by do-
mestic policy is also expected to capture idiosyncratic industry-related factors. The final

estimating model then becomes:

R& D _stock;; 1 n CCUS _stock;;—q n Green_stock;_;
Aitfl i R&D,StOCk'it,1 gt R&D,StOCk'it,1

log Qit = logby + 7
(3)

+ 4 log scopeli—1 + BXy—1 +vs + 14 + T+ €

Column (1) includes industry, year, and country fixed effects, while estimates in Columns

time period. In particular, assuming that patent filings were uniformly distributed during the year, we could
identify the yearly count of disclosed patents as the sum of the patents filed in the first half of the previous
year (t-1) plus the filings in the second half of the year before (¢-2). Results are in Appendix D, Table 22.
3600y Tax, COy ETS, Low Carbon RED subsidies, Technology support policies, Diesel tax.
3TWe use the concise Policy-PCA measure to keep the interpretation of the results manageable, since this
variable enters both linearly and interactedly with carbon emissions.
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(2), (3) and (4) account for firm and year fixed effect estimates. Robust standard errors are

clustered at the firm level. Table [9 reports the results.

Table 9: Market performance: Tobin’s ()

InQ (1) (2) 3) (4)
CCUS/R&D_stock; 1 202.9 1.912 -2,780%* -2,988%*
(0.810)  (0.996)  (0.037)  (0.024)
Green/R&D stock; 1 -4.831 3.825 3.318 27.84
(0.321)  (0.236)  (0.257)  (0.199)
In_Scopel; 1 -0.07617%** 0.0124 0.0116 0.0130
(0.000)  (0.553)  (0.582)  (0.536)
In_Scopel;—1 #CCUS/R&D_stock,—_; 234.1F* 252.9%*
(0.040)  (0.029)
In_Scopel;—;#Green/R&D_stock;_; -1.908
(0.268)
R&D _stock/Fixed Ass.;_; 0.0207** -0.00581 -0.00584 -0.00574
(0.040)  (0.600)  (0.599)  (0.605)
In_Tot_Assets;_; -0.0795%F*F  _0.169***  -0.169***  _0.169***
(0.005)  (0.007)  (0.007)  (0.008)
Leverage; 1 -0.6827%** -0.312 -0.317 -0.312
(0.006)  (0.201)  (0.193)  (0.202)
Cap_Intensity; 1 8.59e-06  -7.49e-05* -7.63e-05* -7.76e-05*
(0.428)  (0.079)  (0.072)  (0.066)
ROA_3y_-MA, 7.659%** 4.940%FF  4.926%**  4.916%F*
(0.000)  (0.000)  (0.000)  (0.000)
Policy_pca;_; 0.0843%**  0.0707***  0.0725%**  0.0724***
(0.002)  (0.005)  (0.004)  (0.004)
ROA 3y_sd; 1 0.810 -0.744 -0.752 -0.754

(0.529) (0.536)  (0.530)  (0.529)

Observations 2,546 2,546 2,546 2,546
Year FE Yes Yes Yes Yes
GICS FE Yes Yes Yes Yes
Country FE Yes Yes Yes Yes
Firm FE No Yes Yes Yes
r2_a 0.672 0.257 0.257 0.257
Number of firm_id 349 349 349 349

Robust pval in parentheses
K p<0.01, ** p<0.05, * p<0.1
In Column (1) and (2) the same model is presented without and with firm fixed effects
for comparability. In both columns, we find no direct association between firm value and
CCUS patenting (CCUS/R&D_stock,_1), nor with green patenting (Green/RE&D_stock;_) or

with R&D intensity (R&D_stock/Fized Ass.;—1)[F| CO, emissions (In_Scopel;_;) enters with

38 An interesting evidence comes from Faria et al. (2022)[40] who find a negative impact of green patents
on market value in a sample of firms in oil-related sectors.
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a negative and significant coefficient at a cross-sectional level, in line with the idea that the
stock market penalizes firms with heavier climate impact (see, for example, Matsumura et
al., 2014[67] or Perdichizzi et al., 2024[80]), but the variable turns insignificant in the FE
models.ﬁ The environmental policy variable, Policy-PCA, is positive and significant in all
columns, suggesting that in countries where environmental policy is tighter, the stock market
anticipates that “brown” companies are prompted to adjust sooner to greener technologies.
This finding is consistent with evidence by Choi & Luo (2021)[28] that the impact of firm-
level emissions on market-value is negative and worse in countries with tighter environmental
policies. Finally, turning to control variables, we find that firm value is positively related
to accounting profitability (ROA_3y_sd;_1), and negatively correlated with firm leverage
(Leverage, 1) and size (In_Tot_Assets,_1).

Results become more informative in Columns (3)-(4), where we test whether the lack of
significance of the relationship between CCUS patents and firm value may depend on a non-
linearity, i.e., that the impact of patents may change depending on its level of “browness”.
When we add the interaction between CCUS patents and carbon emissions, results show
that CCUS patents enter with a negative coefficient, but the interactive term is positive and
significant. This suggests that CCUS patenting does affect the firm’s market value positively,
but only if the company is a high carbon emitter, hence more subject to the climate-transition
risk and to the need to convert, urgently, to less polluting technologies. More specifically, we
can calculate that, based on estimates in column 4, the negative effect of CCUS patenting

on the market-to-book ratio turns positive at a level of In_Scopel emissions equal to 11.77,

39This is likely due to persistence, i.e., low variability in absolute terms over time of the emission variable
in levels.
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and that the number of firms exceeding the turning point is quite large, i.e., 261 out of 408
companies benefit from CCUS patenting in terms of market value.

Interestingly, we find no such significant effect with broadly-defined green patents, which
suggests that the stock market seems to value positively firms with higher climate risk
when they direct their research efforts towards environment-friendly, but sector-specific,

technologies.

5.2.2 CCUS patenting and stock returns

We now focus on total stock returns to investigate if CCUS patenting may mitigate the
so-called “carbon risk premium”, i.e., the higher expected returns required by investors for
holding stocks of brown companies that face, more than others, the climate-transition risk
(Bauer et al. 2022)[8]. In this literature, a relevant contribution is by Bolton and Kacperczyk
(2021)[14] who, within the traditional efficient capital markets theory, estimate the effect of
carbon emissions on stock returns using panel regressions rather than standard portfolio
methods (see, among the others, Péstor et al., 2021[77], and Bauer et al., 2022[8]). In this
paper, we follow their estimating approach, but depart from their research question, in that
we investigate the relationship between (annual) stock returns and CCUS patents. In fact,
our interest is for the market response to companies’ efforts to reduce their firm-specific
climate risk. To the extent that many CCUS patenting firms in our dataset operate in high
carbon-intensive industries, they are subject to a stronger environmental pressure that can
reduce their market value. In this context, patenting in fields such as CCUS could be a safe
strategy to mitigate their carbon risk, and we expect that it should reduce the stock market

premium.
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In our analysis, the stock returns of firm 7 in year ¢ are regressed on the number of CCUS
patents, the log of direct carbon emissions, a vector of control variables and Policy-PCA our

summary measure of environmental stringency policies related to decarbonization issues:

Tot_Ret;y = Py + S1CCS _patentsy 1 + Balogscopel ;1
(4)
+ B3EPSy 1 +~yControlsy 1 + i + A\ + €54

Table reports the results of panel regressions that include a large set of firm-level
variables typical in the financial literature estimating stock returns regressions. The log of
total asset (In_Tot_Assets;_1) is a measure of firm size, the Tobin’s Q (Tobins@;_1) is a proxy
of growth prospect, the standard deviation of the stock returns (Tot_Ret_sd;_;) measures the
company’s risk, and the level (ROA;_;) and 3-year standard deviation (ROA_3y_sd;_1) of the
return on assets measure profitability and its volatility while the financial leverage controls
for the capital structure. In addition, given our focus on research activity, we include a
Green dummy to denote if the firm has filed a green patent in year t¢-1, the normalized R&D
expenditures (R&D_int;_1), and the capital-labour intensity (Cap_Intensity,_1) and labour
productivity (Lab_Productivity;_1) to control for the production function. Finally, all esti-
mated models include firm, and year fixed effects interacted with GICS sectors to account for
time varying industry-specific technological trends and different exposure to climate concerns
(see, for example, Péstor et al., 2022[76]) and control for additional unobserved firm level
variables. €; is the error term. All RHS variables are lagged one year and robust standard

errors are clustered by firm. Also with stock returns regressions we test the robustness of

our results to a longer delay between the patent filing and the announcement to the market.

Results are in Appendix [E.2] Table [26]
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Table 10: Market performance: Stock returns

Tot_Ret (1) (2) (3) (4)

CCUS_pat;_1 -0.200 2.017%* 1.986* 4.537**
(0.320) (0.046) (0.057) (0.016)

Green_pat;_; 9.61e-05  -2.23e-06  0.00466  0.000906
(0.984) (1.000) (0.908) (0.982)
In_Scopel;_; -0.583 -0.499 -0.469 -0.369
(0.635) (0.685) (0.710) (0.771)

In_Scopel;_#CCUS_pat;_y -0.148%F  -0.146**  -0.272%**
(0.019) (0.024) (0.008)

In_Scopel;_#Green_pat;_; -0.000327 -8.27e-05
(0.905) (0.976)

Policy pca;_q -5.026%F* 5 085***  _5 (088¥**  _4.658%**
(0.002) (0.001) (0.001) (0.004)

Policy pca; 1 #CCUS pat;_1 -0.325%*
(0.051)

TobinsQ:—1 -8.251FFF 8 334% K _8.349%**  _8.305%**
(0.009) (0.009) (0.009) (0.009)

R&Dint,_; 280.5%* 282.4%* 282.4%* 282.5%*
(0.014)  (0.014)  (0.014)  (0.014)

In_Tot_Assets;_; -8.532%* -8.417* -8.438* -8.313*
(0.051) (0.053) (0.054) (0.057)
Leverage;_ 10.90 10.85 10.83 10.53
(0.581) (0.583) (0.584) (0.593)

Cap_Intensity; 1 0.000669  0.000653  0.000655 0.000693
(0.611)  (0.621)  (0.621)  (0.602)

ROA; ;4 -43.05 -42.65 -42.68 -42.38
(0.327) (0.332) (0.332) (0.335)

Tot_Ret_sd;_1 0.554%**  (0.554%**  (.554%FFF () .554%**
(0.000) (0.000) (0.000) (0.000)

ROA 3y_sd;_; -39.61 -39.53 -39.59 -38.78
(0.400) (0.401) (0.401) (0.410)

Lab_Productivity, ; -0.00120  -0.00107  -0.00108  -0.00112

(0.834)  (0.853)  (0.852)  (0.845)

Observations 2,587 2,587 2,587 2,587
Number of firm_id 347 347 347 347
Firm FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
GICS FE Yes Yes Yes Yes
Year X GICS FE Yes Yes Yes Yes
r2.a 0.263 0.263 0.263 0.263

Robust pval in parentheses
¥ 0,01, ¥ p<0.05, * p<0.1
Results in Column (1) show that CCUS patents have no significant impact on total
returns, neither have green patenting and direct carbon emissions. However, in Columns (2)-
(4), when we allow for non-linearity in the relationship between CCUS patents and carbon

emissions, the CCUS coefficient turns positive and significant while the interaction enters
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with a negative and significant Coefﬁcient.@ This evidence suggests that, CCUS patents per
se, are associated with higher stock returns, i.e., raise the premium requested by the market
to invest in these companies, partly due to their implicit connection with climate risk and
partly due to the (usual) high uncertainty and costs associated with patent activity.

However, the negative and significant interaction with CO, emissions tells us that, for
high emitters, CCUS patents reduce the carbon risk premium. Considering the forward-
looking nature of the stock market, this suggests that innovating in CCUS technologies
is viewed as promising enough to lower, in perspective, the pressure by regulators and
environmentally-friendly investors on companies in most polluting sectors.

In Column (3), we add the interaction between green patents and carbon emissions,
but neither the linear term nor the interaction are significant, while the evidence on CCUS
patents still holds. Finally, in Column (4), we focus on the impact of environmental pol-
icy by interacting Policy-PCA with CCUS patents, and find that the mitigation effect of
CCUS patents is stronger in countries where environmental policies are tighter, which sug-
gests that capital markets, though globalized, take into due account also the local stance of
environmental policy{]

Using our results in Table 10, we can calculate quantitative effects of the impact of

CCUS patenting and derive some policy implications. So, in Col. (3), the positive effect of

40This finding is consistent with the negative sign on CCUS patents and positive coefficient on the
multiplicative term in the previous Tobin’s regressions

HInterestingly, this result allows some speculations with regard to a possible different market response
to CCUS patenting. While the mitigation of the carbon premium for high emitting companies (see columns
(2), (3), (4)) might suggest an incentive to lock-in into carbon-intensive technological pathways, the result
that the mitigating effect is significantly larger where climate policy is tighter (column (4)) might suggest
that the market rewards high-emitters not for innovation efforts in CCUS technologies that would lock
them in in carbon intensive activities, but for investing in alternative, carbon removal options. These
speculations suggest that further, more specific, analysis is required to disentangle the complex nature of
CCUS technologies and its new technological pathways.
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CCUS patents on total returns turns negative (thus reducing the risk premium) at a value
of In_Scopel emissions of 13.63, and the number of firms surpassing the turning point is 162
out of 408. If we use the coefficients in Col. (4), where we also account for the effect of
environmental policy (via the interaction with Policy-PCA), the turning point is at 14.91 and
95 are the firms that will see a reduction in their risk premium (hence a lower cost of equity)
thanks to their patenting activity. With a simple exercise of comparative statics, we find that
if Policy-PCA went to zero - i.e., no environmental constraints at all - the number of firms
benefiting from their CCUS patenting would fall to 35 while, should policy become most
stringent, this number would jump to 221. Turning to control variables, we find that stock
returns are positively related with their variability and negatively related with the market-
to-book ratio in line with the literature (e.g., Bolton and Kacperczyk, 2021[14]). Moreover,
R&D intensity enters with a positive and significant coefficient, reflecting investors’ concern
about high uncertainty and risk related to both the standard research activity and the CCUS
technology-specific risks@

Overall, our finding are in line with the risk framework described by Angelo & Johnston
(2023)[5], whereby firms’ innovative skills are correlated to lower future returns as a conse-
quence of the compensation of the related risk. However, our results add further insights by
showing that the pattern of the perceived risk is not constant across firms but depends on
their environmental profile and on how strongly innovation is needed for an improvement,

in other words on how tight the climate policy is.

42To further explore the propensity of firms with very high emissions to invest in these technologies, we
re-estimated column (4) of Table 10, accounting for a quadratic effect of carbon emissions, but we found that
the coefficients are insignificant, both linearly and interactedly with CCUS patents. Then we also tested
whether the firm’s investment in R&D may vary with COy emissions, i.e. increase (or decrease) with the
brownness of the company. We found no evidence of such non-linear effect, but all other results remain
unchanged. We thank one Reviewer for suggesting these further in-depth analyses.
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6 Conclusion

This paper studies the factors influencing firms’ decisions to innovate in Carbon Capture and
Storage (CCUS) technologies and the impact of CCUS patenting on their performance in the
stock market. Although CCUS is often viewed as key to decarbonization, we highlight that
it comprises a wide range of very different technologies, from E.O.R. to D.A.C.C., so that the
debate is still open about whether it can be defined straightforwardly “green”. An overview
of the data reveals that many firms patenting in CCUS belong to carbon-intensive industries
and that CCUS patenting has increased starting from the year 2000, in particular from
2010. By leveraging on firm-level data on CCUS, green and generic patent activity, carbon
emissions, and financial performance, we identify key determinants as well as implications
for both firms and policymakers.

Our results show that higher levels of carbon emissions are positively related to both
the probability and the intensity of patenting CCUS innovations. Moreover, we find strong
evidence of path dependency in CCUS innovation: firms with prior patents in CCUS tech-
nologies are more likely to continue innovating in this field. The tightness of environmental
policy at the country level positively affects the decision to patent CCUS innovations. Al-
together, these results suggest that environmental pressure, as captured by both the firm-
specific climate risk and the country-level climate policy, acts as a significant driver of CCUS
innovation.

When we turn to financial performance, our analysis shows that CCUS patents are pos-
itively valued by the stock market when the patenting firm is a high carbon emitter. These

companies experience a reduction of the carbon risk premium, which suggests that investors
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recognize and reward efforts to improve their (poor) environmental performance in a risk-
mitigating perspective. When we calculate the quantitative effects of CCUS patenting, we
find that the stance of the local environmental policy is crucial in determining the magnitude
of the impact, i.e., the number of firms that, thanks to their patent activity in CCUS, ben-
efit from a reduction of the risk premium. Interestingly, we find no evidence of a significant
similar effect for green patents on market value and total return, suggesting that investors
perceive a sector-specific eco-innovation like CCUS as a more credible commitment for these
firms.

This study contributes to the literature on the impact of intangibles on firms’ perfor-
mance in the capital market. Our findings are in line with the literature showing that
eco-innovation positively affects firm’s market performance subject to tight environmental
pressure, provided the costs of shifting from traditional to eco-innovation are small. This
may be the case with CCUS, which adapts sector-specific technologies to the goals of the
green transition and opens a practical gateway strategy for brown companies that aim to
signal their commitment to sustainability.

Our research is subject to a number of limitations. For reasons of data availability it was
not possible to have a longer observation period, nor could we access to technology-specific
R&D data and to the disclosure date of patent filings. A longer time span, disaggregated
R&D data and a more exact timing would allow us more insights on the dynamics between
firm signaling and market response. Furthermore, it is important to add that the analysis of
the impact of these technologies on the environment, e.g. the amount of CO, emissions at
the firm-level, was out of the scope of our study; nevertheless, this part of the story is crucial

for policymakers to evaluate appropriate strategies, and is part of our future agenda along
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with a more thorough and meticulous patent analysis that disentangles green and non-green
CCUS patents.

In conclusion, our study highlights the critical, and complementary, role of environmental
policy and stock market incentives in fostering CCUS innovation, clearly indicating that a
significant response - both by firms and investors - exists for solutions that build on knowledge
available at industry level that can be adapted to green purposes, despite the high costs of
research and project development. Hence, policymakers could design strategies that not
only regulate emissions but also actively promote eco-innovations that take into account
the potential of matching between sectoral specificity and suitable technologies, ensuring a

sustainable transition to a low-carbon economy.

References

[1] International Energy Agency. Carbon Capture, utilisation and Storage - Energy System
- IFA website. URL: https://www . iea .org/energy- system/carbon- capture-
utilisation-and-storage.

[2] Philippe Aghion et al. “Path dependence, innovation and the economics of climate
change”. In: Handbook on green growth (2019), pp. 67-83.

[3] Omnya Al Yafiee et al. “Direct air capture (DAC) vs. Direct ocean capture (DOC)-A
perspective on scale-up demonstrations and environmental relevance to sustain decar-
bonization”. In: Chemical Engineering Journal 497 (2024), p. 154421.

[4] Dimitris Andriosopoulos, Pawel Czarnowski, and Andrew P Marshall. “Does green
innovation increase shareholder wealth?” In: Awvailable at SSRN 4012633 (2022).

[5] Ben Angelo and Mitchell Johnston. “Technological innovation and stock returns: In-
novative skill versus innovative luck”. In: Financial Review (2023).

[6] Kenneth Joseph Arrow. Economic welfare and the allocation of resources for invention.
Springer, 1962.

[7] Stefano H Baruffaldi and Markus Simeth. “Patents and knowledge diffusion: The effect
of early disclosure”. In: Research Policy 49.4 (2020), p. 103927.

[8] Michael D Bauer et al. “Where is the carbon premium? Global performance of green
and brown stocks”. In: Journal of Climate Finance 1 (2022), p. 100006.

[9] Mario Benassi et al. “Patenting in 4IR technologies and firm performance”. In: Indus-
trial and Corporate Change 31.1 (2022), pp. 112-136.

46


https://www.iea.org/energy-system/carbon-capture-utilisation-and-storage
https://www.iea.org/energy-system/carbon-capture-utilisation-and-storage

19
20
21
22

23]

[24]

[25]

James Bessen. “Estimates of patent rents from firm market value”. In: Research Policy
38.10 (2009), pp. 1604-1616.

Nicholas Bloom and John Van Reenen. “Patents, real options and firm performance”.
In: The Economic Journal 112.478 (2002), pp. C97-C116.

Richard Blundell, Rachel Griffith, and John Van Reenen. “These models allow a dif-
ferent process to describe the number of positive counts”. In: The Economic Journal
105.429 (1995), pp. 333-344.

Richard Blundell, Rachel Griffith, and Frank Windmeijer. “Individual effects and dy-
namics in count data models”. In: Journal of econometrics 108.1 (2002), pp. 113-131.

Patrick Bolton and Marcin Kacperczyk. “Do investors care about carbon risk?” In:
Journal of financial economics 142.2 (2021), pp. 517-549.

Patrick Bolton and Marcin Kacperczyk. “Global pricing of carbon-transition risk”. In:
The Journal of Finance 78.6 (2023), pp. 3677-3754.

Patrick Bolton and Moritz Wiedemann. “The CO2 Question: Technical Progress and
the Climate Crisis”. In: Available in SSRN (2024).

Derek Bosworth and Mark Rogers. “Market value, R&D and intellectual property:
an empirical analysis of large Australian firms”. In: Fconomic Record 77.239 (2001),
pp. 323-337.

Enrico Botta and Tomasz Kozluk. “Measuring Environmental Policy Stringency in
OECD Countries”. In: 1177 (2014). DOI: https://doi.org/https://doi.org/10.
1787/5jxrjnc4bgvg-en. URL: https://www.oecd-ilibrary.org/content/paper/
5jXrjncdbgvg-en.

Kristie Briggs and Mary Wade. “More is better: evidence that joint patenting leads to
quality innovation”. In: Applied economics 46.35 (2014), pp. 4370-4379.

Hassan Bruneo et al. “Risk and return in the biotech industry”. In: International
Journal of Productivity and Performance Management (2023).

Sara Budinis et al. “An assessment of CCS costs, barriers and potential”. In: Energy
strategy reviews 22 (2018), pp. 61-81.

Mai Bui et al. “Carbon capture and storage (CCS): the way forward”. In: Energy &
Environmental Science 11.5 (2018), pp. 1062-1176.

John Byrd and Elizabeth S Cooperman. “Investors and stranded asset risk: Evidence
from shareholder responses to carbon capture and sequestration (CCS) events”. In:
Journal of Sustainable Finance & Investment 8.2 (2018), pp. 185-202.

Giulio Cainelli, Alessio D’Amato, and Massimiliano Mazzanti. “Resource efficient eco-

innovations for a circular economy: Evidence from EU firms”. In: Research Policy 49.1
(2020), p. 103827.

George Augusto Batista Camara et al. “The use of CCS technologies in large scale: an
analysis of the brazilian legal framework”. In: Brazilian Journal of Petroleum and Gas
10.4 (2016).

47


https://doi.org/https://doi.org/https://doi.org/10.1787/5jxrjnc45gvg-en
https://doi.org/https://doi.org/https://doi.org/10.1787/5jxrjnc45gvg-en
https://www.oecd-ilibrary.org/content/paper/5jxrjnc45gvg-en
https://www.oecd-ilibrary.org/content/paper/5jxrjnc45gvg-en

[30]

[31]

[32]

[38]

[39]

Grazia Cecere, Nicoletta Corrocher, and Maria Luisa Mancusi. “Financial constraints
and public funding of eco-innovation: Empirical evidence from European SMEs”. In:
Small Business Economics 54 (2020), pp. 285-302.

Louis KC Chan, Josef Lakonishok, and Theodore Sougiannis. “The stock market val-
uation of research and development expenditures”. In: The Journal of finance 56.6
(2001), pp. 2431-2456.

Bobae Choi and Le Luo. “Does the market value greenhouse gas emissions? Evi-
dence from multi-country firm data”. In: The British Accounting Review 53.1 (2021),
p. 1009009.

Directorate-General for Climate Action. Carbon capture, use and storage - Ouverview.
URL: https://climate.ec.europa.eu/eu-action/carbon-capture-use-and-
storage/overview_en.

Alessandra Colombelli, Claudia Ghisetti, and Francesco Quatraro. “Green technologies
and firms’ market value: a micro-econometric analysis of European firms”. In: Industrial
and Corporate Change 29.3 (2020), pp. 855-875.

Maria C Cuerva, Angela Triguero-Cano, and David Cércoles. “Drivers of green and
non-green innovation: empirical evidence in Low-Tech SMEs”. In: Journal of Cleaner
Production 68 (2014), pp. 104-113.

Francesco Dalla Longa, Remko Detz, and Bob van der Zwaan. “Integrated assessment
projections for the impact of innovation on CCS deployment in Europe”. In: Interna-
tional Journal of Greenhouse Gas Control 103 (2020), p. 103133.

Valentina De Marchi. “Environmental innovation and R&D cooperation: Empirical
evidence from Spanish manufacturing firms”. In: Research policy 41.3 (2012), pp. 614—
623.

Pablo Del Rio, Javier Carrillo-Hermosilla, and Totti Kénnola. “Policy strategies to
promote eco-innovation: An integrated framework”. In: Journal of industrial ecology
14.4 (2010), pp. 541-557.

Cristina Diaz-Garcia, Angela Gonzalez-Moreno, and Francisco J Saez-Martinez. “Eco-
innovation: insights from a literature review”. In: Innovation 17.1 (2015), pp. 6-23.

Justin Doran and Geraldine Ryan. “Eco-Innovation—does additional engagement lead
to additional rewards?” In: International Journal of Social Economics 41.11 (2014),
pp. 1110-1130.

Giovanni Dosi and Richard R Nelson. “Technical change and industrial dynamics as
evolutionary processes”. In: Handbook of the Economics of Innovation 1 (2010), pp. 51—
127.

Alex Edmans, Doron Levit, and Jan Schneemeier. “Socially responsible divestment”.
In: Available in SSRN (2022).

Lena Faber, Henner Busch, and Lina Lefstad. “A Trojan horse for climate policy:
Assessing carbon lock-ins through the Carbon Capture and Storage-Hydrogen-Nexus
in Europe”. In: Energy Research & Social Science 120 (2025), p. 103881.

48


https://climate.ec.europa.eu/eu-action/carbon-capture-use-and-storage/overview_en
https://climate.ec.europa.eu/eu-action/carbon-capture-use-and-storage/overview_en

[40]

[41]

Joao Ricardo Faria, Greg Tindall, and Siri Terjesen. “The Green Tobin’s q: theory and
evidence”. In: Energy Economics 110 (2022), p. 106033.

Lourenco GD Faria and Maj M Andersen. “Sectoral dynamics and technological con-
vergence: an evolutionary analysis of eco-innovation in the automotive sector”. In:
Industry and Innovation 24.8 (2017), pp. 837-857.

Martina Feyzrakhmanova and Constantin Gurdgiev. “Patents and R&D expenditure
effects on equity returns in pharmaceutical industry”. In: Applied Economics Letters
23.4 (2016), pp. 278-283.

Fabrizio Fusillo. “Green Technologies and diversity in the knowledge search and output
phases: Evidence from European Patents”. In: Research Policy 52.4 (2023), p. 104727.

Danielle Galliano and Simon Nadel. “Firms’ eco-innovation intensity and sectoral sys-
tem of innovation: the case of French industry”. In: Industry and Innovation 22.6
(2015), pp. 467-495.

Alfonso Gambardella. “The economic value of patented inventions: Thoughts and some
open questions”. In: International Journal of Industrial Organization 31.5 (2013),
pp. 626—633.

Maximilian Gérgen et al. “Carbon risk”. In: Available at SSRN 2930897 (2020).

Zvi Griliches. “Market value, R&D, and patents”. In: Economics letters 7.2 (1981),
pp. 183—187.

Bronwyn H Hall. Innovation and Market Value. Working Paper 6984. National Bureau
of Economic Research, 1999. poI: |10 . 3386 /w6984. URL: http://www.nber.org/
papers/w6984.

Bronwyn H Hall, Adam Jaffe, and Manuel Trajtenberg. “Market value and patent
citations”. In: RAND Journal of economics (2005), pp. 16-38.

Oliver Hart, Luigi Zingales, et al. “Companies Should Maximize Shareholder Welfare
Not Market Value”. In: Journal of Law, Finance, and Accounting 2.2 (2017), pp. 247—
275.

Ivan Hasc¢ic and Mauro Migotto. “Measuring environmental innovation using patent
data”. In: OECD Working Paper (2015).

Mahmoud Hassan and Damien Rousseliere. “Does increasing environmental policy
stringency lead to accelerated environmental innovation? A research note”. In: Ap-
plied Economics 54.17 (2022), pp. 1989-1998.

Jerry Hausman, Bronwyn H Hall, and Zvi Griliches. “Econometric Models for Count
Data with an Application to the Patents-R & D Relationship”. In: Econometrica:
Journal of the Econometric Society (1984), pp. 909-938.

Jana Hojnik and Mitja Ruzzier. “What drives eco-innovation? A review of an emerging
literature”. In: Environmental Innovation and Societal Transitions 19 (2016), pp. 31—
41.

49


https://doi.org/10.3386/w6984
http://www.nber.org/papers/w6984
http://www.nber.org/papers/w6984

[58]

[59]

[60]

[61]

[62]

[63]

Jia-Ning Kang, Yun-Long Zhang, and Weiming Chen. “Delivering negative emissions
innovation on the right track: A patent analysis”. In: Renewable and Sustainable Energy
Reviews 158 (2022), p. 112169.

Jia-Ning Kang et al. “Observing technology reserves of carbon capture and storage

via patent data: Paving the way for carbon neutral”. In: Technological Forecasting and
Social Change 171 (2021), p. 120933.

Prashrita Kaushal, Sanjeev Majumdar, and Hanumanthu Purushotham. “Patent Land-
scape Analysis in Carbon Dioxide Capture Technologies”. In: Climate Change and
Green Chemistry of CO2 Sequestration (2021), pp. 87-101.

Effie Kesidou and Pelin Demirel. “On the drivers of eco-innovations: Empirical evidence
from the UK”. In: Research policy 41.5 (2012), pp. 862-870.

Tobias Kruse et al. “Measuring environmental policy stringency in OECD countries”.
In: 1703 (2022). DOI: https://doi.org/https://doi.org/10.1787/90ab82e8-en.
URL: https://www.oecd-ilibrary.org/content/paper/90ab82e8-en.

Ki-Hoon Lee and Byung Min. “Green R&D for eco-innovation and its impact on car-
bon emissions and firm performance”. In: Journal of Cleaner Production 108 (2015),
pp. 534-542.

Markus Leippold and Tingyu Yu. “The Green Innovation Premium: Evidence from
US Patents and the Stock Market”. In: Swiss Finance Institute Research Paper 23-21
(2023).

Dongmei Li. “Financial constraints, R&D investment, and stock returns”. In: The
Review of Financial Studies 24.9 (2011), pp. 2974-3007.

Huan Liu, Weisheng Zhou, and Xuepeng Qian. “Spatial-Temporal Distribution of Car-
bon Capture Technology According to Patent Data”. In: Fast Asian Low-Carbon Com-
munity: Realizing a Sustainable Decarbonized Society from Technology and Social Sys-
tems (2021), pp. 153-169.

J Scott Long and Jeremy Freese. Regression models for categorical dependent variables
using Stata. Vol. 7. Stata press, 2006.

Maria Cristina Majo and Arthur van Soest. “The fixed-effects zero-inflated Poisson
model with an application to health care utilization”. In: (2011).

Inmaculada Martinez-Zarzoso. “The log of gravity revisited”. In: Applied Economics
45.3 (2013), pp. 311-327.

Ella Mae Matsumura, Rachna Prakash, and Sandra C Vera-Munoz. “Firm-value effects
of carbon emissions and carbon disclosures”. In: The accounting review 89.2 (2014),
pp- 695-724.

Mariana Mazzucato and Massimiliano Tancioni. “Innovation and idiosyncratic risk:
an industry-and firm-level analysis”. In: Industrial and Corporate Change 17.4 (2008),
pp. 779-811.

David Merchant. “Enhanced oil recovery-the history of CO2 conventional wag injec-

tion techniques developed from lab in the 1950’s to 2017”. In: Carbon management
technology conference. CMTC. 2017, CMTC-502866.

50


https://doi.org/https://doi.org/https://doi.org/10.1787/90ab82e8-en
https://www.oecd-ilibrary.org/content/paper/90ab82e8-en

[75]

[76]
[77]
[78]

[79]

Bert Metz et al. IPCC special report on carbon dioxide capture and storage. Cambridge:
Cambridge University Press, 2005.

Juliana Monteiro and Simon Roussanaly. “CCUS scenarios for the cement industry: Is
CO2 utilization feasible?” In: Journal of CO2 Utilization 61 (2022), p. 102015.

Fatick Nath, Md Nahin Mahmood, and Navid Yousuf. “Recent advances in CCUS:
A critical review on technologies, regulatory aspects and economics”. In: Geoenergy
Science and Engineering (2024), p. 212726.

llayda Nemlioglu and Sushanta K Mallick. “Do innovation-intensive firms mitigate
their valuation uncertainty during bad times?” In: Journal of Economic Behavior &
Organization 177 (2020), pp. 913-940.

Joélle Noailly and Roger Smeets. “Directing technical change from fossil-fuel to renew-
able energy innovation: An application using firm-level patent data”. In: Journal of
Environmental Economics and Management 72 (2015), pp. 15-37.

Ariel Pakes and Mark Schankerman. “The rate of obsolescence of patents, research
gestation lags, and the private rate of return to research resources”. In: RéD, patents,
and productivity. University of Chicago Press, 1984, pp. 73-88.

L’ubos Pastor, Robert F Stambaugh, and Lucian A Taylor. “Dissecting green returns”.
In: Journal of Financial Economics 146.2 (2022), pp. 403-424.

L’ubos Pastor, Robert F Stambaugh, and Lucian A Taylor. “Sustainable investing in
equilibrium”. In: Journal of Financial Economics 142.2 (2021), pp. 550-571.

L’ubos Pastor and Pietro Veronesi. “Was there a Nasdaq bubble in the late 1990s?”
In: Journal of Financial Economics 81.1 (2006), pp. 61-100.

Pari Patel and Keith Pavitt. “The technological competencies of the world’s largest
firms: complex and path-dependent, but not much variety”. In: Research policy 26.2
(1997), pp. 141-156.

Salvatore Perdichizzi et al. “Carbon emission and firms’ value: Evidence from Europe”.
In: Energy Economics 131 (2024), p. 107324.

Michael E Porter. “Towards a dynamic theory of strategy”. In: Strategic management
journal 12.52 (1991), pp. 95-117.

Michael E Porter and Claas van der Linde. “Toward a new conception of the environment-
competitiveness relationship”. In: Journal of economic perspectives 9.4 (1995), pp. 97—
118.

Rosa Puertas and Luisa Marti. “Eco-innovation and determinants of GHG emissions
in OECD countries”. In: Journal of Cleaner Production 319 (2021), p. 128739.

Klaus Rennings. “Redefining innovation—eco-innovation research and the contribution
from ecological economics”. In: Ecological economics 32.2 (2000), pp. 319-332.

Lorenzo Rosa et al. “The water footprint of carbon capture and storage technologies”.
In: Renewable and Sustainable Energy Reviews 138 (2021), p. 110511.

51



[90]

[91]

[92]

[93]

Sabina Scarpellini et al. “R&D and eco-innovation: opportunities for closer collab-
oration between universities and companies through technology centers”. In: Clean
Technologies and Environmental Policy 14 (2012), pp. 1047-1058.

JMC Santos Silva and Silvana Tenreyro. “Further simulation evidence on the perfor-
mance of the Poisson pseudo-maximum likelihood estimator”. In: Economics Letters
112.2 (2011), pp. 220-222.

JMC Santos Silva and Silvana Tenreyro. “The log of gravity”. In: The Review of Eco-
nomics and statistics 88.4 (2006), pp. 641-658.

Benjamin K Sovacool, Marfuga Iskandarova, and Frank W Geels. “Leading the post-
industrial revolution? Policy windows, issue linkage and decarbonization dynamics in
the UK’s net-zero strategy (2010-2022)”. In: Industrial and Corporate Change (2024),
dtae015.

Technology brief - Carbon capture, use and storage (CCUS). Tech. rep. Mar. 2021. URL:
https://unece.org/sites/default/files/2021-03/CCUS),20brochure_EN_final.
pdf.

Grid Thoma. “Composite value index of trademark indicators: A market value analysis
using Tobin’s Q”. In: World Patent Information 66 (2021), p. 102064.

Otto Toivanen, Paul Stoneman, and Derek Bosworth. “Innovation and the market
value of UK firms, 1989-1995". In: Ozford Bulletin of Economics and Statistics 64.1
(2002), pp. 39-61.

Philip J Vergragt, Nils Markusson, and Henrik Karlsson. “Carbon capture and storage,
bio-energy with carbon capture and storage, and the escape from the fossil-fuel lock-
in”. In: Global Environmental Change 21.2 (2011), pp. 282-292.

Nan Wang, Keigo Akimoto, and Gregory F Nemet. “What went wrong? Learning
from three decades of carbon capture, utilization and sequestration (CCUS) pilot and
demonstration projects”. In: Energy Policy 158 (2021), p. 112546.

Ning Wang and John Hagedoorn. “The lag structure of the relationship between patent-
ing and internal R&D revisited”. In: Research Policy 43.8 (2014), pp. 1275-1285.

Weidong Wang et al. “Does increasing carbon emissions lead to accelerated eco-innovation?

Empirical evidence from China”. In: Journal of Cleaner Production 251 (2020), p. 119690.

World Intellectual Property Organization (WIPO). Guide to the international patent
classification. 2023. URL: https://www.wipo.int/edocs/pubdocs/en/wipo-guide-
1pc-2023-en-guide-to-the-international-patent-classification-2023.pdf.

Siying Yang et al. “Impact of pilot environmental policy on urban eco-innovation”. In:
Journal of Cleaner Production 341 (2022), p. 130858.

Wantao Yu, Ramakrishnan Ramanathan, and Prithwiraj Nath. “Environmental pres-
sures and performance: An analysis of the roles of environmental innovation strategy
and marketing capability”. In: Technological Forecasting and Social Change 117 (2017),
pp- 160-169.

92


https://unece.org/sites/default/files/2021-03/CCUS%20brochure_EN_final.pdf
https://unece.org/sites/default/files/2021-03/CCUS%20brochure_EN_final.pdf
https://www.wipo.int/edocs/pubdocs/en/wipo-guide-ipc-2023-en-guide-to-the-international-patent-classification-2023.pdf
https://www.wipo.int/edocs/pubdocs/en/wipo-guide-ipc-2023-en-guide-to-the-international-patent-classification-2023.pdf

Appendices

A TPC/CPC classification

In the literature, patent retrieval may follow three main approaches, that is a search based
on keywords, (see Kaushal et al., 2021) [57], on technology-specific codes (see Camara et al.,
2016)[25] or on a combination of keywords and codes (see Liu et al.,2021)[63]. Each method
has its pros and cons: while searching keywords and codes could deliver more precise results,
many technologies not directly showing the right combination might be overlooked. Figure
shows the structure of IPC/CPC codes that we followed to retrieve our CCUS patent data.lﬂ.

B 01 D 53/00 Main group — 4™
level
Section — 1%t level | or
_ond -
Class — 2" |evel 53/14 Subgroup - lower

level
Subclass — 3
level

Group

Figure 2: WIPO code classification

Due to the hierarchical nature of WIPO categorization, some patents could be difficult
to isolate under single subgroups in relation to the type of technology they represent and
the use it is made of each of them[97]. By the same token, a search solely based on title
and abstracts is likely to leave out patents which are directly linked to the knowledge chain
that is the object of the study. Eventually, we decided to run a search based on technology-
specific codes, which should allow us to include all the patents that are, either completely
or in part, ascribed to CCUS technologies. Specifically, our research query covered each
patent (available on Orbis IP database) that contained, among its list of IPC/CPC codes,
at least one code relative to the sub-class to which CCUS technologies belong to; then, we
proceeded to isolate strictly CCUS patents based on technology-specific codes as provided
and categorized by WIPO (the so-called sub-groups).

Table reports the codes and brief definitions of the sub-classes we used to identify
CCUS neighbouring technologies, while table reports the IPC/CPC sub-groups codes
used by WIPO to identify CCUS technologies.

43Figure [2| shows the nested ordering of IPC/CPC categories with an example code from the actual CCUS
sample (B01D53/14, corresponding to gas separation by absorption). The full lists are in tables [12| and
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Table 11: TPC/CPC WIPO groups of CCUS technologies

Code description

B01D53/14 | by absorption

B01D53/22 | by diffusion

B01D53/62 | Carbon oxides

B65G5/00 | Storing fluids in natural or artificial cavities

or chambers in the earth

E21F17/16 | Modification of mine passages or chambers for
storage purposes, especially for liquids or gases
C01B31/20 | Carbon dioxide

C01B32/50
E21B41/00 | Equipment or details not covered by groups E21B15/00 - E21B40,/00
E21B43/16 | Enhanced recovery methods for obtaining hydrocarbons

F25J3/02 | by rectification, i.e. by continuous interchange of

heat and material between a vapour stream and a liquid stream
Y02P40/18 | Carbon capture and storage [CCS]

Y02P10/122 | by capturing or storing CO4

Y02P90/70 | Combining sequestration of CO4 and exploitation of

hydrocarbons by injecting CO5 or carbonated water in oil wells
Y02C20/40 | Capture or disposal of CO,

Y02A50/20 | Air quality improvement or preservation, e.g. vehicle

emission control or emission reduction by using catalytic converters

Table 12: IPC/CPC WIPO sub-classes used to identify CCUS neighbouring technologies

Code | description

BO1D | separation

E21F | safety devices, transport, filling-up, rescue, ventilation,

or drainage in or of mines or tunnels

CO01B | non-metallic elements; compounds thereof

E21B | earth or rock drilling; obtaining oil, gas, water,

soluble or meltable materials or a slurry of minerals from wells

B65G | transport or storage devices, e.g., conveyors for

loading or tipping, shop conveyor systems or pneumatic tube conveyors
F25] | liquefaction, solidification, or separation of gases

or gaseous mixtures by pressure and cold treatment

YO02P | climate change mitigation technologies in the production or processing of goods
YO02A | technologies for adaptation to climate change

Y02C | capture, storage, sequestration or disposal of greenhouse gases

o4



T 5x€69°0 19600 08107 s PET07 5sex6LT°07  srx ITT0- #9810 5k0CT0 5610 4axP8T0 eaa IET0 5on L8007 5G090°07  sssLOT'07 seseLT10- 019000~ sk GLE°07 rx90C°0 546080°0 P4e0°0-| uowgay
T 501900 5559CE 07 54xPOS0'0™ 45486107 5xex 12070~ #0100 s l1C0 4k GOT0 45i8GE°0 5 8PE0 5iklLT0 s PLT07 5 VCVO'0 5558070~ w8810 oklLT 07 orkP GV 07 s €L60°07 saer 1680°0~ s 1€60°0- | DSWAOL
T 5x:9890°0-  ZFE0°0-  L2900°0 86100~ +98€0°0 76200~ 0ET0°07 #5x9960°0  5446€80°0  TEI000 98E00°0 65200 20200~ 0TT00 092000 4429070~ 80€0°0-  GET0°0-  66L00°0-|  WYUIOL
I k0080 kG710 55lTC0 4kl 180°07  8ETO'0-  ssesBET°07 45LGT07 4482900~ 446290°0 0CC0'0~ ##+8480°0-  ¥8TO'0~ 5449600~ 082007 549090 54x9EE°0  444C1T0 S
T soklCL0 5sxP0L0 #4x6€00°0 #448880°0 #ELV0'0 4£x58L0°0 9900 PEC00- 1€C0°0  %P090°0" 5446510~ k00107 s ICT07 saOEE'0 3operLET'07 55979070 Poid
T IS0 0cc0'0- «8970°0- G900 291007 545800707 ssaVET07 s IVO0°07 5559290707 555668070~ 0 5 GGT07 4 9TE0 4orx IPB0°07 s GCL0- 9BeIA]
1 wpkIPLO0 92200 #COV0'0 55xGL80°0  EIVO'07 sxPBLOO~  FIEO0 sxesVGLO0" s TET0- sokOPT07 5ok @PT0 ok TTT07 5ex80T°0- jurde)
[P 190 0 552990°0 45599070 4ssCVT0 4L TT0- 5G9F0°0- ¥8€0°0 20600070 1088007 x0T s GL80°0™  4x0EG0'0" 4 1680°0- | VINAGIT a0y
T we80T0 soa€ST0 s8I0 5 F€90°0- 8GT0°0- ¥ac00 111070~ 8CEO'0  4CeP00- 4019070~ x98€0°0-  PIC000-  0T€0°0 157A0Y
T soiCIG0 596107 s €107 s ICT0- 88000~ €VI0°0- $€GT0 48T 07 4yx ILLOO-  TCTO00 55 1E80°07  44€950°0-] PTAEVOU
T 9E800°07 5xx89C°07 saE€T07 54xECLOT0 56700~ sk CLT07 5k GCC 07 48007 sen6TT 0~ OC1°0-|  PYVOU
[ 5a8EC07 5170 €6C0°0 #x€150°0- s GLT07 oa8LT 0 4xG8L010- L0200 54€990°0-| VINAEYOU
T ssPCLO 06200 s#xLCT°0 okl GE°07 aGPL0 408000 okOLT0  5aGEC0  4a0GT0|  ANSUOAL
T 5892070 P1e0°0 we0VC 07 59897 0 LTE007 s P960°0 siel0T°0 55962070 NS AU
T 568770 30600870 559970 5k €0T°07 o 0780°07 500T°0= 04200°0-|  CODXV.L
1 T6V°0 549750 89P0°0-  xC0FO'0-  ¥920°0- PO10°0|  [osoldxeL
T 5900 5580107 s PPT07 5k €0T 07 5L T60°07| CODUISOPUAL
T 5x@890°07 44x6LL0°0  ssexTTT0 45xC0T0 Sdd
1 96600 5461170 TodoogTu|
T 4466570 P01
1 yed-uoo1n)
wdsnoD
WIOw ([23Y  OSUIqO], 194107, RS porg ofemnd]  urden) YNTAGISTAOY  187A9Y PSACTVOY  PSVOY VINASYOY  dnguool, NS AU COOXVI  [PSOIPXe], zODUISOpel], Sdd  1edoogrup ypojsieg  yedTusain) yed-gnpD

TUD P U0UD]2LL0L) €T OR],

'sosATewre eortidwe oY) UI Pasn sa[qeiTea o1} 0] (1] 91qe)) XI11RTT UOTYR[AII00

O} SMOUS O[(R) SUIMO[[O] O[T,

SOOULJISYIP ueow ojdures pue XILIjewW UOIIR[OII0) ¢

55



Table 14: Mean differences between CCUS and CCUS neighbouring firms (T-tests)

CCUS firms | pocus  BCCUSaeighb  ACCUS — ACCUS.neighb t N

CCUS_pat 2.253 0 2.253 7.75%*FF 3,153
Green_pat 253.09 31.32 221.76 15.3%** 3,153
In_Scopel 13.58 11.91 1.67 16.9%** 3,153
norm_Pat_Stock .0011 .00068 .00037 7.04%** 3,153
R&D_int. .025 .0384 -.0132 -8.75%*FF 3,153
Tot_Ass. 16.79 16.11 .676 14.4%*%* 3153
ROA_3y_MA .0413 .0518 -.0105 -5.46%** 3,140
Tot_Ret 12.18 11.85 321 0.219 2,868
In_Q -.504 -.0558 -.448 -13.32%F% 2 982
Leverage 185 207 -.0219 -4.68*** 3153
Cap_Int 1047.78 1102.42 -54.64 -.81 3,153
Lab_Prod 635.77 490.27 145.5 6.48%*F* 3,142

*p < 0.05, ¥ p < 0.01, *** p < 0.001

56



C Zero-inflated poisson model

The extensive margin process is modeled by a probit model with the following form:

Pr(Paty = 0|py) =1 — ®(logpe) ()
where
1 logpit 42 d (6)
d(lo it) = —F/—— e zdat
(logpuit) or / _
and

pir = exp (o + b1 log scopely_1 + Prenvstry_1 + v Xu—1 +vs + v +1;) (7)

The main explanatory variable we use to model CCUS patenting behavior is the lagged
scope 1 emissions both in levels and in differences. We include the vector X;;_; containing
a set of control variables at firm-level (ROA, revenue growth, log of total assets, leverage,
capital intensity, stock of general patents, normalized R&D expenditure). v, v, and 7; are
sets of sector, year and firm fixed effects proxied by the Blundell pre-sample mean estimator
(Blundell et al., 1995)[13].

Once the decision is made by the firm, the following step is modeled by a log-linear
Poisson regression, typically suitable for count data (see Hausman et al., 1984)[53]. The

Poisson regression has the following form:
E(Pati| X, vs, Vi, Te, i) = it (8)

such that
it = exp (Bo + P1log scopely 1+ v X1 +vs + v + 1 + 71) (9)

Note that p; # Ay, i.e., the probit specification adds environmental stringency index as
a further country-level control to determine the probability of market entry. Furthermore,
all probit models feature the lagged scope 1 emissions and not the differences. For reasons
of (lack of) convergence, it was not possible to include country-level fixed effects in the
estimation of the extensive margin, though they were included in the intensive margin (7).

It follows that the conditional mean of the model will be:
E(Patiy| Xit, Vs, Vg, Te, i) = P(logpuie) X Aig (10)

Table [15| reports descriptive statistics of the CCUS patents’ pre-sample mean (Blundell
et al., 1995[12]; 2002[13]) and of the binary variable in the used sample.
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Pre-sample N Mean SD Min p25 p50 P75 P99 Max
CCUS mean 2,616 1.093113 3.195215 O 0 .0833333 .75 14.58333 38.75
CCUS dummy | 2,616 .5940367 .4911714 0O 0 1 1 1 1

Table 15: Pre-sample mean and associated dummy variable for CCUS patenting

To complement and support the empirical strategy described above, we explore the
differences between the two sub-periods (pre-sample means). The following tables thus
show the results from testing the mean differences of the main explanatory variables used
in the paper. In particular, Tables and respectively test the mean differences be-
tween sample period (2010-2022) and pre-sample period explanatory variables by groups
that did (CCUS_pre_sample_dummy=1) and did not (CCUS_pre_sample_dummy=0) patent

any CCUS innovation in the pre-sample period.

Table 16: Sample variables and past CCUS innovation groups (T-tests)

Full | ftocusa=1 — Hocus.a—o  fecusd—1  ficcus.d—o  tstat N

CCUS_Pat 2.685 2.757 0.072 8.238%** 2852
Green_Pat 209.3 239.41 30.10 15.78%**% 2 852
R&D_int -.009 .0256 .0346 -5.896%*F* 2,825
In_Scopel 1.56 13.624 12.064 15.318%** 2766
In_Tot_Ass. .642 16.84 16.19 13.56%** 2,852
Lab. Prod. 203.66 664.75 461.08 8.95*H* 2,845
Cap_Int. 204.35 1139.9 935.54 3.27** 2,845
ROA -0.002 0.047 0.049 0.772 2,852

t statistics in parentheses
*p < 0.05, ¥ p < 0.01, ¥* p < 0.001

Table 17: Pre-sample variables past and CCUS innovation groups (T-tests)

Full | pocus.d=1 — flocus.d—o  flccusd=1  fccusd—o  tstat N
R&D_int -.0423 .0276 .0699 -18.63*** 12,409
In_Scopel 1.276 13.89 12.62 10.96%** 1,951
In_Tot_Ass. 2.808 14.23 11.42 71.52%%* 33,599
Lab. Prod. 172.72 510.77 338.05 21.21%%* 16,458
Cap_Int. 247.9 831.01 583.11 6.53%** 27,011
ROA 0.048 0.0066 -.0415 2.29% 22,863

t statistics in parentheses
*p < 0.05, ** p < 0.01, *** p < 0.001

T-statistics indeed confirm that a significant difference between firms from the two groups
is present both pre- and post-2011, thus empirically justifying the implementation of the

estimator to control for unobserved firm-level heterogeneity impact on CCUS patenting.
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D Market-to-book model

As anticipated in the relevant section, we draw from Griliches (1981)[47], Hall (1999)[48] and
Hall et al. (2005)[49]. Herein we show the step-by-step derivation of the model, which sees
the firm’s market value as a function of a combination of tangible and intangible assets, as
in equation (10):

Vit = be(Air + vKit)? (11)

where Vj; is the market value of firm ¢ at time ¢, A;; is the value of tangible assets, K;
denotes the firm’s knowledge, i.e., intangible assets, and the parameter o allows for non-
constant returns to scale. By dividing each term by A;;, applying logarithms on both sides

and allowing o = 1, we can rearrange as in (11):

log Qir = log Viy — log Ay = log by + log (1 + vif:) (12)
Where logQ);; denotes the logarithm of the Tobin’s Q. As in the original formulation of the
model, v represents the shadow value of knowledge assets relative to the value of tangible
assets. Following Hall et al. (2005)[49], from equation (12), we modify the model by replacing
K;; with consistent measures of the knowledge assets, that is R&D and the stock of (CCUS
and Green) patents divided by the stock of R&D (all lagged to allow for time-consistency).
The underlying idea is to “capture the knowledge-creation process as a continuum going from
R&D to patents, which involves the sequential revelation of information about the value to
the firm of the innovation generated along the way” (Hall et al. (2005) p.24 [49)]):

R& D _stock;;_q CCUS _stock;—q Green_stock;;_q

Ajta e R&D _stockt— s R&D _stock;;—4 )+ €t
(13)

The ratio of R&D to tangible assets informs about the commitment of the firm to generate

CCUS _stock;;
R& D _stock;t

CCUS technology. €; represents the random stochastic error with zero mean. Finally,

log Qi = logby + log (1 4+ v

new knowledge in each period, while adds the actual patenting yield of the specific

applying the approximation log(1+ x) = x, valid for small enough z, we can rewrite (13) as:

R& D _stock;;_q CCUS _stock;i—, Green_stock;;_q
+ 72 + 73 + €t
Ait—l R&D,StOCk'it_l R&D,StOCkit_l

log Qir = log by + (14)
Finally we augment the model with scope 1 emissions in log, the usual firm-level control vari-
ables such as size, profitability, productivity, indebtedness, capital intensity (vector X;; 1),
and year (v, ), country (7;) and sector (vy) fixed effects. The resulting baseline model is the

following;:

59



R& D _stock;;_q n CCUS _stock;;—y n Green_stock;_q
Aitfl 7 R&D,StOCkit,1 7 R&D,StOCkit,1 (15)

+ a4 log scopely—1 + BXy—1 +vs + 14 + T + €

log Qit = log by + 71

We can estimate equation (15) with OLS.

E Robustness analysis

E.1 Determinants of CCUS patenting

In this section we present a battery of robustness tests on the the results of the ZIP models.

Firstly, we deal with the issue of the size of the sample when using different lags of
the carbon emission variable. Tables and [19| report the results of the ZIP models when
we use the sample restricted to keep the number of observations constant across the three

specifications (i.e., considering N from column (4)).
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Table 18: ZIP - Extensive margin

Table 19: ZIP - Intensive Margin

1st-step
Probit regression
1) 2 (3) (4) 2nd-step
CCUS_pat=1 L1 L2 L3 Lall Poisson regression
1) 2) (3) &)
L._TAXCO2 0.0719%  0.0711%  0.0748*  0.0763* CCUS pat._count b1 LD1 LD2 d all
(0.082)  (0.084)  (0.068)  (0.062) _
L. RD.SUB -0.0498 -0.0483 -0.0491 L0.0515 L.Cap_Intensity -0.000307**  -0.000308*** -0.000319*** -0.000322***
(0343 = (0851)  (0339)  (0.321) L.In_Tot_Assets ((?-1(111202 (00.104120*) ((10i0402l*) ((?-1(?3’2
L._.TRADESCH_CO2 -0.166%*  -0.164**  -0.166**  -0.167** A ' : X o
(0.088) (0.088) (0.085) (0.082)
L.Cap_Intensity -5%851221 -5[2)3521 -(5(2)8512-11 -5?)35125 L-Rev-growth.8y-mean 2 251 T8I 2T
R ) ) ) ) ' (0.001) (0.001) (0.000) (0.000)
(0.130) (0.127) (0.190) (0.172) L.Lab_Productivity 0.000523**  0.000529***  0.000546***  0.000543***
L.In_Tot_Assets -0.0947 -0.0894 -0.0900 -0.0975 (0.010) (0.008) (0.005) (0.006)
(0224) (0255  (0259)  (0-224) L.ROA_3y_mean 3263%%  -3.269%* 3,205 3,260
L.Rev_growth_3y_mean 1.737%* 1.812%%  2.006** 1.937+* (0.037) (0.034) (0.027) (0.030)
(0.049)  (0.040)  (0.020)  (0.025) L Leverage A T
L.Lab_Productivity 9.57e-05  9.63e-05  8.34e-05  8.45e-05 (0.002) (0.002) (0.003) (0.003)
(0.614)  (0.602)  (0.645)  (0.645) L.R&D it -4.164 4175 -4.583 -4.876
L.ROA_3y_mean -0.461 -0.487 -0.589 -0.602 (0.461) (0.459) (0.415) (0.382)
(0.739) (0.724) (0.670) (0.663) L.Green_dummy -0.300 -0.313 -0.385 -0.383
L.Leverage SL154% -L160% -1.213%  -1.217F (0.305) (0.296) (0.204) (0.198)
(0.085) (0.084) (0.075) (0.075) L.In_norm_Pat_Stock 145.6%%* 148.6*+* 160.1%%* 160.7%%*
LR&D_int 4360 -4432 <4379 -4.037 (0.002) (0.002) (0.001) (0.001)
(0.125) (0.121) (0.137) (0.164) D1.In_Scopel 0.0182 -0.0294
L.Green_dummy 1A36%%*  L141%%F  1.166%%*  1.158%** (0.881) (0.882)
(0.000) (0.000) (0.000) (0.000) LD1.In_Scopel 0.0766 -0.194
L.In_norm Pat_Stock -8.507 -12.06 -17.80 -13.02 (0.401) (0.292)
(0.846) (0.775) (0.664) (0.754) LD2.In_Scopel 0.201%* 0.318%#*
L.In_Scopel 0.145%%+ 0.148 (0.012) (0.005)
(0.001) (0.255) pre_sample_ CCUS 0.0730%** 0.0731#+%* 0.0733%** 0.0732%%*
L2.In_Scopel 0.140%** -0.0672 - . . : .
(0.003) (0.722) pre_sample_.CCUS_dummy 1((1]:20:*0*‘)* l([])sol[i[]j* Iaffoo*[i)* l((ll;i[;so*o*)*
L3.In_Scopel 0.139%%* 0.0665 - B - ) § . ) )
0003  (0554) (0.002) (0.001) (0.001) (0.001)
Year FE Yes Yes Yes Yes
pre_sample_CCUS 0.455%%F  0.460%**  0.468***  (0.462%** Country FE Yes Yes Yes Yes
(0.000)  (0.000)  (0.000)  (0.000) 0Dl DI DI =0 pyrEs
presample CCUS_dummy  0.447%F  0.443%*%  0.433**F  0.437** hi2 A50.447%HF 454.29%%* 459.37+* 466.37++*
(0.012)  (0.012)  (0.013)  (0.013) Log pseudolikelihood 964295  -2642.99 -2636.1 -2631.37
Observations 2,630 2,630 2,630 2,630
Year FE Yes Yes Yes Yes Number of firm_id 344 344 344 344
GICS FE Yes Yes Yes Yes Robust pval in parentheses - SE clustered firm-level
HO: L1L2L3=0 10.43%%* w0k 20,01, %% p<0.05, * p<0.1

Robust pval in parentheses - SE clustered firm-level
#E 50,01, ** p<0.05, * p<0.1

Second, we test our results using carbon emission intensity instead of the log of the
amount of emissions. Again the evidence is consistent with our previous results. In Tables

and the ZIP models use the alternative measure of emission intensity, computed as:

In_Scope;;_4
salesi_q
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Table 20:

ZIP - Eztensive margin

1st-step
Probit regression
) ® ® @
CCUS_pat=1 L1 L2 L3 L_all
L..TAXCO2 0.0529 0.0444 0.0602 -
(0.170)  (0.263)  (0.120) -
L..RD_SUB -0.0460 -0.0431 -0.0431 -
(0.361)  (0.385) 0387) -
L._.TRADESCH_CO2 -0.142%* -0.131%* -0.158** -
(0.045)  (0.070)  (0.026) -
L.Cap_Intensity -0.000172  -0.000179* -0.000175* -
(0.145)  (0.090) 0.000) -
L.In_Tot_Assets 0.0664 0.0396 0.0570 -
(0269) (0525  (0.361) -
L.Rev_growth_3y_mean 1.243* 1.409* 1.516* -
(0.063)  (0.070)  (0.057) -
L.Lab_Productivity 8.99e-05 0.000146 0.000168 -
(0.650)  (0.408)  (0.337) -
L.ROA_3y_mean -0.354 -0.387 -0.707 -
0.779)  (0.773) 0.607) -
L.Leverage -1.647F%* -1.278* -1.090 -
0.009)  (0.053)  (0.104) -
L.R&D.int -6.304%* -5.379* -5.569* -
0.022)  (0.059)  (0.053) -
L.Green_dummy 1.243%%%  1.215%%F 1.205%+* -
(0.000)  (0.000) (0.000)
L.In_norm_Pat_Stock -10.20 -17.87 -16.91 -
(0.832)  (0.658) 0.684) -
L.GHG_Int. 0.197* -
(0.089) -
L2.GHG_ Int. 0.171 -
(0.135) -
L3.GHG_ Int. 0.131 -
(0.226) -
pre_sample_ CCUS -0.485%FFF  _(.483%F*  _(.470%** -
0.002)  (0.000) 0.000) -
pre_sample_ CCUS_dummy  -0.297 -0.355%* -0.437%* -
0.130)  (0.047)  (0.013) -
Year FE Yes Yes Yes
GICS FE Yes Yes Yes

Robust pval in parentheses - SE clustered firm-level
Fk p<0.01, ** p<0.05, * p<0.1

Note that estimates for column (4) are not available as the convergence for this spec-

ification was not achieved. This is a common phenomenon in non-linear models as the

Zero-inflated Poisson.

Third, we use a more standard count data model, i.e., the pseudo-maximum likelihood
Poisson regression (Silva et al., 2011[87] and Silva et al., 2006[88]) on the sample firms that
patent strictly defined CCUS patents. This estimator is robust to excessive zeroes (Martinez-
7arzoso, 2013) and is adequate to deal with count-data dependent variables. Results in

Table 21: ZIP - Intensive Margin
2nd-step
Poisson regression
(1) 2 () 4)
CCUS_pat_count D1 LD1 LD2 d_all
L.Cap_Intensity -0.000374**F  -0.000340%*  -0.000317***
(0.020) (0.013) (0.008)
L.In_Tot_Assets 0.108 0.149*% 0.142%
(0.190) (0.068) (0.083)
L.Rev_growth_3y_mean -2.220%%* -2.498%** -2.707F**
(0.001) (0.001) (0.000)
L.Lab_Productivity 0.000696**  0.000583***  0.000541***
(0.011) (0.008) (0.006)
L.ROA_3y_mean -3.472%* -3.154%* -3.338%*
(0.039) (0.043) (0.025)
L.Leverage -1.863** -2.524%%* -2.535%F*
(0.032) (0.003) (0.002)
L.R&D_int -0.596 -4.447 -4.565
(0.915) (0.427) (0.415)
L.Green_dummy -0.383 -0.298 -0.390
(0.254) (0.301) (0.198)
L.In_norm_Pat_Stock 136.6%+* 147.0%%* 159.8%+*
(0.004) (0.002) (0.001)
D1.In_Scopel 0.195 -
(0.176)
LD1.In_Scopel 0.0539
(0.562)
LD2.In_Scopel 0.191%*
(0.018)
pre_sample_CCUS 0.0739%+* 0.0735%%* 0.0734%%*
(0.000) (0.000) (0.000)
pressample CCUS_dummy  1.322%%* 1.197#** 1.152%%*
(0.000) (0.000) (0.000)
Year FE Yes Yes Yes
Country FE Yes Yes Yes
Observations 2,877 2,755 2,630
Number of firm_id 395 377 360

Robust pval in parentheses - SE clustered firm-level
** p<0.01, ** p<0.05, * p<0.1

Table 22| are consistent with the previous evidence from the intensive margin.
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Table 22: Poisson pseudo-mazximum likelihood estimation

M @) ®) @
CCS_pat D1 D2 D3 D_all
_TAXCO2_yr 0.0442 0.0387 0.0364 0.0368
(0.401) (0.462) (0.493) (0.486)
_RD_SUB_yr -0.287*** -0.177* -0.107 -0.108
(0.008) (0.062) (0.286) (0.279)
_TRADESCH_CO2_yr -0.173* -0.0484 0.00562 0.00717
(0.094) (0.578) (0.950) (0.935)
pre_sample_ccs 0.105%** 0.119%** 0.119%** 0.118%**
(0.000) (0.000) (0.000) (0.000)
pre_sample_dummy_ccs 1.262%%* 1.095%** 1.219%** 1.218%**
(0.000) (0.000) (0.000) (0.000)
green_dummy_yr 0.718 0.717 0.677 0.686
(0.173) (0.142) (0.177) (0.169)
cap_empw_yr -0.000247%¥*  -0.000313***  -0.000327***  -0.000325***
(0.003) (0.000) (0.000) (0.000)
In_tot_liab_w_yr 0.321%** 0.381%** 0.382%** 0.381%**
(0.000) (0.000) (0.000) (0.000)
norm_rd_neww_yr -1.502 -1.957 -2.432 -2.608
(0.435) (0.342) (0.258) (0.229)
rev_g_3y_meanw_yr -2.203F* -2.341%%* -2.442%%* -2.467FF*
(0.000) (0.000) (0.000) (0.000)
prod_lw_yr 0.000525*%F  0.000517***  0.000543***  0.000540***
(0.000) (0.000) (0.000) (0.000)
In_norm_pat_stock_yr 199.6%** 197.6%%* 206.3*** 208.1%*%*
(0.000) (0.000) (0.000) (0.000)
roa_3y_meanw_yr -4 1TTHEH -3.145%%* -3.125%%* -3.129%%*
(0.000) (0.000) (0.001) (0.001)
leveragew_yr -2.257FK -2.580%** -2.582%%* -2.555%F*
(0.000) (0.000) (0.000) (0.000)
In_scopel new_d_yrl 0.215 -0.142
(0.122) (0.292)
In_scopel new_d_yr2 0.0656 -0.0168
(0.330) (0.874)
In_scopel new_d_yr3 0.132* 0.188%*
(0.076) (0.039)
Observations 1,991 1,918 1,838 1,838
Year FE Yes Yes Yes Yes
GICS FE Yes Yes Yes Yes
Country FE Yes Yes Yes Yes
chi2 729.6 895.2 868.4 883.0

Robust pval in parentheses

% 20,01, ¥ p<0.05, * p<0.1
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Fourth, we use the zero-inflated negative binomial (ZINB) regression model instead of the
Zero-inflated Poisson to estimate the determinants of CCUS patenting. Since the estimation
process did not reach convergence neither when we use the three separate EPS sub-indices for
environmental policy nor when we use the principal component reduction - Policy-PCA, we
used the EPS OECD aggregate index as a proxy for the stance of environmental regulation.
Results in Table 23] and [24] confirm our previous evidence and the role of both lagged CO,

emissions and climate policy stringency.

Table 23: ZINB - Extensive margin

Table 24: ZINB - Intensive Margin

1st-step
Probit regression
(1) @) (3) (4) 2nd-step
CCUS_pat = 0 L1 L2 L3 L.all Negative binomial regression
) @ ) @
Linscopel 0100+ 0,298 CCUS_pat D1 LD1 LD2 D_all
(0.001) (0.182)
L2.In scopel 01965 0147 D1.In_Scopel 0.124 0.190
(0.001) (0.599) (0.302) (0.425)
LD1.In_Scopel 0.108 -0.321
L3.In_scopel -0.192%F%  0.120
’ (0.239) (0.154)
LEPS - - (l).l)OQi (0'4471 LD2.In_Scopel 0.209%* 0.299*
.E -0.357 -0.364 -0.398 -0.390 (0.017) (0.050)
(0.059) (0.062) (0.063) (0.057) L.Green_Dummy 0.525 0.497 0.430 0.438
L.Green_Dummy -0.990%%*%  -0.996%** -0.970%**  -0.961*** (0.113) (0.113) (0.176) (0.171)
(0.002)  (0.001)  (0.001)  (0.001) L.In_norm _Pat Stock 13255 140.9%%  150.0%%F  143.7
L.In_norm_Pat_Stock 51.52 64.97 59.75 55.53 (0.018) (0.013) (0.005) (0.009)
(0.375) (0.268) (0.320) (0.335) L.Rev_growth_3y_mean S2.043FFF  2,037FFF  2,020%FF  _1.984%
L.Rev_growth 3y_mean  -1.655  -1.910  -1.788  -1.707 (0.003)  (0.004)  (0.004)  (0.003)
(0.170)  (0.147)  (0.208)  (0.222) L.Leverage S1.869%  -2.100%F  -2.305%F  -2.372%*
L Leverage 0.820 0.528 -0.116 -0.137 0.079)  (0.040)  (0.022)  (0.016)
(0.462)  (0.632)  (0.920)  (0.903) L.In_Tot_Assets 0.0908 0.106 0.103 0.105
L.In_Tot_Assets 0.115 0.150 0.136 0.147 0417)  (0.317)  (0.343)  (0.321)
(0.342)  (0.207)  (0.244)  (0.198) L.Norm R&D 00262  -1.507  -1.793  -1.560
L.Norm_R&D 6.072* 5.365 5.502 5.250 (0.996)  (0.800)  (0.767)  (0.792)
(0.088) (0.138) (0.129) (0.133) L.Lab_Productivity 0.000451*%  0.000419  0.000411  0.000413
L.Cap_Intensity 0.000271  0.000292  0.000295  0.000292 (0.092)  (0.106)  (0.152)  (0.134)
(0.118) (0.107) (0.179) (0.148) L.Cap_Intensity -0.000196 -0.000187 -0.000190 -0.000195
L.Lab_Productivity -8.75¢-05  -0.000158 -0.000241 -0.000226 (0.154)  (0.169)  (0206)  (0.188)
(0.840) (0.734) (0.683) (0.676) L.ROA_3y_mean -1.774 -1.750 -2.350 -2.510
L.ROA_3y_mean 0.226 0410 -0.0590  -0.336 (0.407)  (0.394)  (0.248)  (0.244)
(0.930) (0.870) (0.981) (0.899)
pre_sample_ccus 0.123%F%  0.121%%F  0.120%%F  (.119%**
pre_sample_ccus -0.922%%%  0.908%**  -0.933%**  -0.897F+* (0.002) (OVDO?) (0'002,) (0002)
pre_sample_dummy _ccus 0.948%* 0.950%* 0.922% 0.901%*
(0.000)  (0.000)  (0.002)  (0.002) _
0.027)  (0.029)  (0.050)  (0.053)
pre_sample_dummy_ccus -0.245 -0.257 -0.348 -0.379
(0.371) (0.346) (0.237) (0.186) Observations 2,764 2,647 2,526 2,526
Year FE Yes Yes Yes Yes
Observations 2,764 2,647 2,526 2,526 Country FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes N _clust 378 360 344 344
GICS FE Yes Yes Yes Yes Robust pval in parentheses
N_clust 378 360 344 344 * 20,01, ** p<0.05, * p<0.1

Robust pval in parentheses
*#F p<0.01, ** p<0.05, * p<0.1

Fifth, to check if some of the control variable may drive the results, we have rerun
the regressions in Columns (1) of Table [7| (Extensive margin) and Column (1) of Table
(Intensive margin) dropping, gradually and then altogether, the significant control variables,
i.e., the 3-year MA of revenue growth, the green dummy, the patent stock and the leverage.

Comfortingly, both L.In_Scopel and L.EPS keep their signs and significance as in the original
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tables. We also repeated the experiment with the specification that includes all three lagged
levels (and differences) of COy emissions (Column (4)). We found that the previous evidence
holds (we do not report the results for reasons of space, but they are available on request.
Sixth, in the ZIP regressions, we dropped the pre-sample mean and the pre-sample
dummy, and included the lagged CCUS patent variable to look for evidence of path de-
pendence. We found that (i) the lagged dependent variable has the expected positive sign
and is statistically significant, (ii) the CO5 emissions keep their signs and significance, con-

firming the previous evidence. Results are available on requestF_Z]

E.2 Impact of CCUS patents on market value and stock returns

- The timing of patent publication

As a general rule, in the major patent offices a period of 18 months is set before publishing
the application of a new patent. Nonetheless, there are many exceptions: for example,
following an explicit request by the applicant, the public disclosure of the application can
be anticipated; or, when the claimed priority date is antecedent to the application filing
date, the 18 month period is set to start from the prior rather than the latter, de facto
reducing the delay; similarly, divisional patents (i.e., patents adding relevant concepts to
prior applications having the same subject-matter to fulfill grant requisites) are publicly
disclosed right after application in the case the parent application is already public{zfl. These
and other exceptions make the exact date of disclosure quite complex to identify, and the
specialized literature studying the phenomenon of early disclosure has found that the time
period can be smaller than full 18 months (see Baruffaldi & Simeth, 2020[7]), and, in any
case, not greater. In the body of this paper, all our specifications consider a lag of 1 year in
response that covers up to 12 of the 18 months for the delay in publication. As a robustness
check, however, we check for the possible distortion generated by a different timing when
the publication of patent applications is further delayed.

First, we present models considering a full two-year lag (2-year) in publication; hence,

assuming that all patent disclosed in year ¢ were filed in year ¢-2:

CCUS _disclosed; = CCUS pat;_ Green_disclosed; = Green_pat;_s (16)

44We thank the Reviewers for suggesting these additional robustness checks.

%see for instance EPO publishing rules (https://www.epo.org/en/service-support/faq/searching-
patents/european-patent-register-and-federated-register /european-2) and ATPA USPTO rules
(https://www.uspto.gov/web/offices/pac/mpep/s1120.html).
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Second, we assume a uniform distribution of publications during the year (i.e., equal
probability to file a patent before and after June) and we decompose the total yearly ap-
plications between patents filed before June and after June every year (Mized-lag). In this
setting, we consider the 18-months rule and we assume that patents filed before June in year
t are disclosed in the following year t+1 and the ones filed after June of year ¢ are disclosed

in the second following year t+2:

CCUS pat,_1 +CCUS pat;_o , Green_pat;_1 + Green_pat;_»
Green_disclosed; =

2 2
(17)

CCUS _disclosed; =

In this way we think we can better take into account the possible heterogeneous disclosure
bias. Following in table 25| we show results for the regressions on market-to-book valud™]
The stocks of patents have been computed accordingly to the assumptions introduced above.

Comfortingly, the robustness analysis confirms our previous results.

46Note that in models (5)-(6) we lose some observations due to how the variable is constructed: no count
for green patents is available for year before 2010, hence the green patent stock is computed starting in 2011.
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Table 25: Market performance: Tobin’s @)

nQ ) @) ®) @) ) ©) @ ®)
Patent var 2-year 2-year 2-year 2-year Mixed-lag Mixed-lag Mixed-lag Mixed-lag
L2.CCUS/L.R&D_stock 245.4 35.70 -3,051% -3,205%*
(0.803) (0.921) (0.050) (0.041)
L2.Green/L.R&D_stock -5.755 2.888 2.420 24.69
(0.279) (0.364) (0.409) (0.365)
L.In_Scopel#L2.CCUS/L.R&D _stock 258.4%* 271.5%*
(0.052) (0.045)
L.In_Scopel#L2.Green/L.R&D_stock -1.725
(0.418)
L.In_Scopel -0.0761%%*  0.0117 0.0112 0.0122 | -0.0743%** 0.0158 0.0145 0.0159
(0.000) (0.578) (0.595) (0.563) (0.000) (0.457) (0.496) (0.456)
L.Policy_pca 0.0843***  0.0713%***  0.0726%**  0.0725%*F | 0.107***  0.0962%**  0.0984*** (.0988***
(0.002) (0.004) (0.004) (0.004) (0.001) (0.001) (0.001) (0.001)
L.CCUS/R&D_stock-mix -334.9 -256.3 -6,821%%  -7,303%*
(0.827) (0.694) (0.034) (0.021)
L.Green/R&D _stock_mix -2.388 2.511 1.328 35.64
(0.647) (0.370) (0.607) (0.331)
L.In_Scopel#L.CCUS/R&D _stock_mix 546.9%* 578.7%*
(0.045) (0.030)
L.In_Scopel#L.Green/R&D_stock_mix -2.628
(0.349)
Firm-level controls Yes Yes Yes Yes Yes Yes Yes Yes
Observations 2,546 2,546 2,546 2,546 2,313 2,313 2,313 2,313
Firm FE No Yes Yes Yes No Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
GICS FE Yes Yes Yes Yes Yes Yes Yes Yes
Country FE Yes Yes Yes Yes Yes Yes Yes Yes
r2.a 0.672 0.256 0.257 0.263 0.256 0.215 0.216 0.216
Number of firm_id 349 349 349 349 346 346 346 346

Robust pval in parentheses
**E p<0.01, ** p<0.05, * p<0.1

Table 26| shows the same analysis applied to total returns. We find that, the results with
patents lagged for two years are not informative, but those with a 18-month delay structure,

in Columns (5)-(8), confirm our evidence.
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Table 26: Market performance: Total returns

Tot Ret ) @) @) ) ) ©) @) ®)
VARIABLES 2-year 2-year 2-year 2-year | Mixed-lag Mixed-lag Mixed-lag Mixed-lag
L2.CCUS pat -0.498* 1.494 1.494 2.068
(0.057) (0.303) (0.329) (0.333)
L2.Green_pat -0.00347  -0.00344  -0.00347  -0.00422
(0.595) (0.596) (0.937) (0.923)
L.In_Scopel#L2.CCUS pat -0.144 -0.144 -0.169
(0.163) (0.183) (0.199)
L.In_Scopel#L2.Green_pat 1.62e-06  4.75e-05
(1.000) (0.987)
L.Policy_pca#L2.CCUS_pat -0.0929
(0.637)
L.Policy pca -5.645%F*  L5.673FFF 5.673%FFF 5 535%FF | 5,607 _5.764%FF 5. 763FF*  _5.669F**
(0.007) (0.007) (0.007) (0.010) (0.007) (0.006) (0.006) (0.009)
L.In_Scopel 0.689 0.762 0.762 0.776 0.697 1.003 0.902 0.917
(0.579) (0.540) (0.557) (0.550) (0.574) (0.424) (0.487) (0.482)
L.CCUS_pat_mix -0.533* 6.304%** 6.568** 7.016**
(0.064) (0.008) (0.010) (0.022)
L.Green_pat_mix -0.00753  -0.00630 -0.0224 -0.0228
(0.394) (0.472) (0.667) (0.662)
L.In_Scopel#L.CCUS_pat_mix -0.514%%%  .0.533%**F  _(.552%F*
(0.004) (0.005) (0.008)
L.In_Scopel#L.Green_pat_mix 0.00115 0.00117
(0.745) (0.739)
L.Policy pca#L.CCUS pat_mix -0.0708
(0.744)
Firm-level controls Yes Yes Yes Yes Yes Yes Yes Yes
Observations 2,223 2,223 2,223 2,223 2,223 2,223 2,223 2,223
Number of firm_id 332 332 332 332 332 332 332 332
Firm FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
GICS FE Yes Yes Yes Yes Yes Yes Yes Yes
Year X GICS FE Yes Yes Yes Yes Yes Yes Yes Yes
r2.a 0.254 0.254 0.254 0.253 0.254 0.255 0.255 0.254

Robust pval in parentheses

% 20,01, ¥ p<0.05, * p<0.1

As a further robustness check, we estimate the Tobin’s q models lagging Green_Pat/R&D
and R&D _Stock/Fixed Asset two years instead of one to match the lag structure in the ZIP
analysis and to mitigate possible endogeneity concerns. Comfortingly, we find that the new
results (available on request) confirm previous evidence. We thank one Reviewer for this

suggestion.
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